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The Problem

A Recurring Question

How to interpolate
f:XCR! =R

where J
X =Q)[-1,1]
i=1

and d is "large" (> 1)




Curse of Dimensionality

Naive Solution

@ Simply use repeated one-dimensional rules

@ We have a tensor of rules

d
T =1 f
i=1

@ In practice

m(ni)
(TIN) =D -

=l @@ -l f

m(ng

)
> FRibs o Raky) Th(a) . TE (xa)
kg=1

interpolation nodes Lagrange basis functions



The Issue ?

Curse of Dimensionality

m nodes per dimension = m9 nodes total
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Sparse Grids

@ Sparse Grids



____ SparscGrids |
The Main ldea

@ Consider the tensor rule

@ Define

@ Rewrite



Sparse Grids

Sparse Grids Interpolator

d
Q¢ => QA
a€c® =1
with © C N9 and where ideally
9] < n

O={aecN . a<n}=>Q3=T7



Back to the Interpolation Formula

@ We want an expression like

(F)(x) = > Tul)f ()

P
e We have (if © is admissible!)
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Back to the Interpolation Formula

@ Since
m( m(aq)
<®/' ) [F1(x) = Z Y F(Radas - - Ragkg) Ua b (51) - - Uany ey (%)
k=1 kg=1
= > F(Rak)Uak(x)
k<m(a)
o We have

d
A= @I,

acO i=1

= Q4[f](x an Z f (R k) Un k(%)

a€c® k<m(c)



Back to the Interpolation Formula

o If nodes are nested = factor f(X, ) and find IC(«ax) such that

QA= ) D callak(x)

a€0:kek(a)

= > F(x) U(x)



Univariates Rules

@ It is preferable to have nested interpolation nodes

@ Let m(/) be the number of nodes as a function of the order /

o Different rules are possible: Clenshaw-Curtis (m(/) = 2/=1 + 1), R-Leja 2
(m(l) =2/ -1), etc.
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Example 1

Fx,y) =x° +y°

With tensor method (e = 10719).
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Example 1

f(x,y) =x°+y°
With sparse grid method (e = 1071°) using R-Leja 2 rule.
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Sparse Grids

Example 2

fxoy) = VIT )2

With sparse grid method (e = 10~*) using R-Leja 2 rule.

05 4
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Example 2: Basis Functions

QEIF1(x) = Y Flxx) U(x)

k

14



Example 3: Sum of Tensor Rules

fx,y) =x"+x2y* +y*

d
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A Question Remains

How to choose © ?
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How to Choose © ?
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How to Choose ©

M. Stoyanov, C. Webster, "A Dynamically Adaptive Sparse Grid Method for
Quasi-Optimal Interpolation of Multidimensional Analytic Functions"
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Let's Take a Step Back

There are actually 2 questions:

@ How well can we expand a function f in terms of mixed-order polynomials.
This is projection

e How good/bad is the interpolation versus projection.
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VRN PY-TTUCHAN Quasi-Optimal Polynomial Space

Projection
e Working on I' = [-1, 1]
o A C N9 is the degrees space
@ Project in
P =span{x — x" :v € A}
@ Legendre polynomials is a good basis
@ Project as

fzf/\:chLl,

veN

where L, are Legendre polynomials of degree at most x* and

oy :/rf(x)Ll,(X)dx.
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VRN e TY-TXUCHAN Quasi-Optimal Polynomial Space

Projection

@ Projection is

fmfA:Zc,,L,,

veN

~ i, = lel?

vEN

How fast does |c,| decrease ? l

@ L, error is
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Example

f(X,y):

ERTN O NCHAN Quasi-Optimal Polynomial Space

1

Vx=22+(y -2

Contourf of coefficients

= Z aly(x,y)
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Quasi-Optimal Projection Space

Assumption 1

f is holomorphic?® in a poly-ellipse

d —1 -1
&, = U ® {zk € C:R(z)| < MTpkcose, IS(zk)| < %sin 0}
pel0,2n] i=1

2Differentiable in the neighborhood of every point = infinitively differentiable

| A

Result 1

Under this assumption,

d

lev] < Cexp(—a - V)H\/2Vk +1

i=1

with a = log(p)

Proof : Taylor Integral Theorem and Formula



Quasi-Optimal Projection Space

The optimal projection space of level p is then defined as

d
A (p) = {y Qv — %Zlog(y;—I—O.S) < p}

i=1

24



VRN Y- UCHAN Quasi-Optimal Interpolation

Interpolation

Interpolation # Projection

°
@ It depends on the set of nodes

@ Can be arbitrarily bad even for "nice" function (Runge Phenomenon)
°

Quantified by the Lebesgue constant
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VRN Y- UCHAN Quasi-Optimal Interpolation

Lebesgue Constant

@ [ is the interpolation operator,
I : {f bounded} — Py

@ p* is the projection of f on Py

@ Then,
[f = Iflloo < (1+ CAIIf — P"lo
e With T H
[/]oe = Cp = sup 811
¢ gl

and g bounded.
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VRN Y- UCHAN Quasi-Optimal Interpolation

Lebesgue Constant

For A, = {a: a < v} (tensor),

i.e., polynomial growth.

@ True for Chebyshev-like polynomial interpolation

o False for equispaced interpolation.



Lebesgue Constant for Sparse Grids

Lebesgue Constant

M =[]l < G+ 1)

1R8I < Cflo]

@ Usually not sharp
o Polynomial
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VRN Y- UCHAN Quasi-Optimal Interpolation

Lebesgue Constant for Clenshaw-Curtis

@ Roots of Chebyshev Polynomials
k
Xk = COS (W) k=0,...,n
n

where
m(l)=2"1+1

@ One can show
A= log(m(1)) oc |
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Lebesgue Constant for Other Rules

o R-Leja 2 with
m(l)=2/-1

and
AR m(/) ox |

@ Selecting the nodes by minimizing ||/

m)=1+1, \~4/I+1
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Quasi-Optimal Interpolation

Combine both results to get level sets like

d d
CVCGXP(—OZ . V) H \/m < Cexp(_a . V) H(]/k + 1)’Yk+0.5
i=1 i=1

Optimal Interpolation Space of level L

NPy ={v:a v+ Blog(v+1) <L}

for unknown « (projection error) and 3 (interpolation error).
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Estimating o and 3

@ We do not know « and 8
@ We can estimate them from the interpolant fx

O Getc,
f(x) ~ f/\(x) = ZE,,LU(X)
ven
© Assume
|&,| o exp(—a - v) (v +1)7"
© Solve

min C+a-v+ Blog(v+1)+ log & |)?
min 3 Slog(v +1) + log &)
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L EVRTNe Y-PXUCHAN Optimal Sparse Grids Interpolant

Let's Summarize

@ Sparse Grids
d d
Q6 = Z@A;i - Z C"‘®/g«'
aed i=1 ac® =1

with © the order (level) space and I/ a sequence of 1-d rules of order / with
m(/) nodes and polynomial Lebesgue constant A;.

o Optimal level-p interpolant has a degree space as
ANp)={v:a v+ pBlog(v+1)<p}
where o and 3 can be approximated based on a current interpolant

Minimal Polynomial Interpolant

For given p, the smallest © that covers A(p) (unique) is optimal.
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Algorithm

@ Given univariate rules,
@ Select initial A° and ©° optimal
@ Repeat for n=0,1,...
o Compute fan = Q&nf
Compute ¢,

[
o Estimate o« and 3
o Update A"*1 and ©"*1



Numerical Results

@ Numerical Results



Estimating Lebesgue's Constant

70
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Lebesgue constant
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N 2 .2 =
Experiment 1 : Parametrized Elliptic PDE

@ Solve in x € D
—=Vx(a(x, y)Vxu(x, y)) = b(x)
@ Evaluate for y € T € R
fly) = llu(x, y)llL.

@ Goal : interpolate f
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Experiment 1 : Parametrized Elliptic PDE

Error

= |sotropic
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Experiment 1 : Parametrized Elliptic PDE

Error

—8—Lej
1072 —4A— Leja odd |
—6— Max-Lebesgue
& —%— Max-Lebesgue odd
" — B - Min-Lebesgue
10 Min-Lebesgue odd 3
- — © - Min-Delta
= ¥ - Min-Delta odd
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_____Numcrical Results |
Experiment 2 : Steady-State Burger's Equation

@ Solve in x € D € R?

=V (a(y)Vxu(x,y)) + (v(y) - Vxu(x,y))u(x,y) =0

e Evaluate for y € [-1,1]3

@ Goal : interpolate f
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_____Numcrical Results |
Experiment 2 : Steady-State Burger's Equation
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Conclusion

Conclusion

Adaptive sparse grids algorithm

@ Source of error : projection (« - "best M terms") and (8 - Lebesgue’s
constant)

Coefficients can be estimated from previous interpolator

Several new univariate rules based on minimization of Lebesgue’s constant
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Conclusion
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