Low-rank Kernel Matrix Approximation using Skeletonized Interpolation with Endo- or Exo-Vertices

Zixi Xu, Léopold Cambier, Eric Darve (Stanford University)
Pierre L’Eplattenier, François-Henry Rouet, Yun Huang, and Cleve Ashcraft (Livermore Software Technology Corporation)

Integral equations \& linear systems

$$
\begin{array}{cc}
a(x) u(x)+\int_{X} \mathcal{K}(x, y) u(y) d y=f(x) & (a I) u+K_{n, n} u=f \\
K_{n, n}=\left[\begin{array}{ccc}
K_{X_{1}, X_{1}} & \ldots & K_{X_{1}, X_{n}} \\
\ldots & \ldots & \ldots \\
K_{X_{n}, X_{1}} & \ldots & K_{X_{n}, X_{n}}
\end{array}\right] \\
K_{i j}=\mathcal{K}\left(x_{i}, y_{j}\right) &
\end{array}
$$

Low-rank off-diagonal blocks

Low-rank off-diagonal blocks

How to build the low-rank approximation

Rank-revealing LU factorization

$$
\begin{gathered}
P_{\hat{X}} K_{X Y} P_{\hat{Y}}=P_{\hat{X}}\left[\begin{array}{ccc}
K_{x_{1} y_{1}} & \cdots & K_{x_{1} y_{n}} \\
\vdots & \ddots & \vdots \\
K_{x_{n} y_{1}} & \cdots & K_{x_{n} y_{n}}
\end{array}\right] P_{\hat{Y}} \\
\approx L_{1: n, 1: r} U_{1: r, 1: n}=K_{X \hat{Y}} K_{\hat{X} \hat{Y}}^{-1} K_{\hat{X} Y}
\end{gathered}
$$

How to build the low-rank approximation

Rank-revealing LU factorization with extended set

$$
P_{\hat{X}}\left[\begin{array}{cc}
K_{X^{\circ} Y^{\circ}} & K_{X^{\circ} Y} \\
K_{X Y^{\circ}} & K_{X Y}
\end{array}\right] P_{\hat{Y}} \approx K_{X \hat{Y}} K_{\hat{X} \hat{Y}}^{-1} K_{\hat{X} Y}
$$

Skeletonized Interpolation

How to pick \widehat{X} and \hat{Y} ?
Algorithm

1. Generate candidates X° and Y°
2. Build $K^{\circ}=K_{X^{\circ}, Y^{\circ}}$
3. Select $\hat{X} \subset X^{\circ}, \hat{Y} \subset Y^{\circ}$ by performing RRQR over K° and $K^{\circ \top}$ up to tolerance ε
4. Return

$$
K_{X, Y} \approx K_{X, \hat{Y}} K_{\hat{X}, \hat{Y}}^{-1} K_{\widehat{X}, Y}
$$

Different ways to define X° and Y° Endo-vertices: subsets of X and Y

$$
X^{\circ}=\operatorname{random}(X)
$$

Different ways to define X° and Y° Endo-vertices: subsets of X and Y

$$
X^{\circ}=\operatorname{MDV}(X)
$$

MDV

Different ways to define X° and Y° Exo-vertices: outside of X and Y

$$
X^{\circ}=\operatorname{chebyshev}(X)
$$

Different ways to define X° and Y° Exo-vertices: outside of X and Y

$X^{\circ}=$ enclosing_surface (X)

Which one is best?

$$
\begin{array}{cc}
K^{\circ}=K_{X^{\circ}, Y^{\circ}} & K_{X, Y} \\
r_{0} \times r_{0} & K_{X, \hat{Y}} K_{\hat{X}, \hat{Y}}^{-1} K_{\hat{X}, Y} \\
r_{1} \times r_{1}
\end{array}
$$

We want
r_{0} as small as possible $\quad r_{1}$ close to optimal SVD-rank such that

$$
\left\|K_{X, Y}-K_{X, \hat{Y}} K_{\hat{X}, \hat{Y}}^{-1} K_{\hat{X}, Y}\right\| \approx \epsilon
$$

Overall, MDV is best: near-field

Overall, MDV is best: far-field

But not always: enclosing surface best

$\circ X_{\text {Sphere }}^{\circ}$
$\circ Y_{\text {Sphere }}^{\circ}$
$\diamond X_{\mathrm{MDV}}^{\circ}$
$\diamond Y_{\text {MDV }}^{\circ}$

But not always: enclosing surface best

Conclusion

- Smooth kernel functions have low-rank kernel matrices for wellseparated clusters
- Pre-selecting vertices using MDV leads to cheap \& near-optimal factorization in most cases
- However, not always the best algorithm for all problems

