(Parallel, Randomized) Rank-revealing factorizations

Léopold Cambier February 2020 QR

for $i = 1 \dots \min(m, n)$

- $v_i = house(A(i:m,i))$
- $A(i:m,i:n) = (I v_i v_i^{\mathsf{T}}) A(i:m,i:n)$

$$v_i = house(a_i)$$
 A_{i-1}

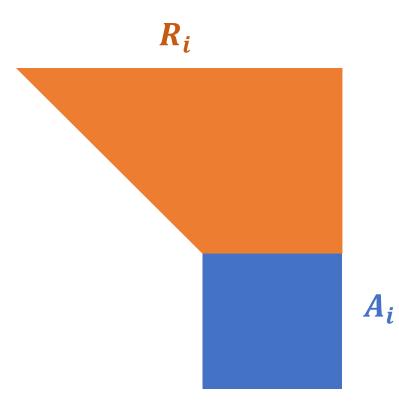
 R_{i-1}

$$A_i = A_{i-1} - v_i v_i^{\mathsf{T}} A_{i-1}$$

QR

for $i = 1 \dots \min(m, n)$

- $v_i = house(A(i:m,i))$
- $A(i:m,i:n) = (I v_i v_i^{\mathsf{T}}) A(i:m,i:n)$



Low-rank approximations

We know the SVD

$$A = USV \approx U_r \Sigma_r V_r, ||A - U_r \Sigma_r V_r||_2 = \sigma_{r+1}(A)$$

• If we add column pivoting to QR, we can do "almost" the same

$$AP = QR$$

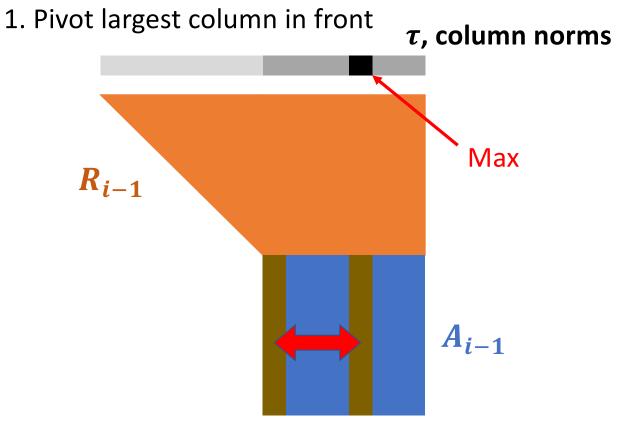
$$Q^{\mathsf{T}}AP = \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix}$$
Low-rank

If $||R_{22}||_2$ is small then

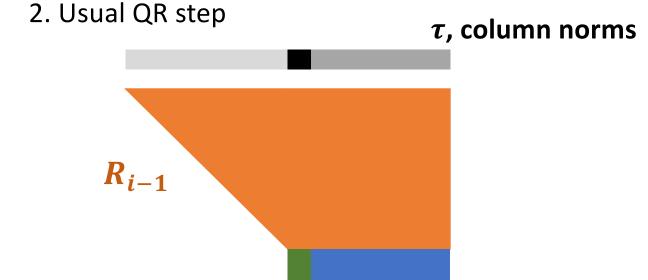
$$A \approx Q_1 [R_{11} \quad R_{12}] P^{\mathsf{T}} = Q_1 W$$

- (+) Cheaper than SVD (direct not "iterative")
- (-) Less reliable
- (+) In practice good enough

"Classical algorithm" (Golub & Van Loan, Algorithm 5.4.1)



"Classical algorithm" (Golub & Van Loan, Algorithm 5.4.1)



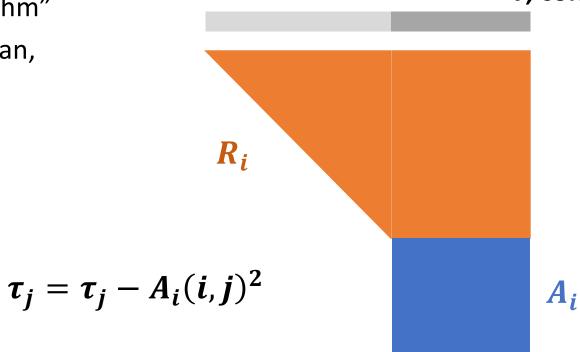
$$v_i = house(a_i)$$

$$A_i = A_{i-1} - v_i v_i^{\mathsf{T}} A_{i-1}$$

 A_{i-1}

"Classical algorithm" (Golub & Van Loan, Algorithm 5.4.1) 3. Update column norms

au, column norms



geqpf in Lapack

```
for j=1:n
     c(j) = A(1:m, j)^T A(1:m, j)
end
r = 0
\tau = \max\{c(1), \dots, c(n)\}\
while \tau > 0 and r < n
     r = r + 1
     Find smallest k with r \le k \le n so c(k) = \tau.
     piv(r) = k
     A(1:m,r) \leftrightarrow A(1:m,k)
     c(r) \leftrightarrow c(k)
     [v, \beta] = \mathsf{house}(A(r:m, r))
     A(r:m,r:n) = (I_{m-r+1} - \beta vv^T)A(:r:m,r:n)
     A(r+1:m,r) = v(2:m-r+1)
     for i = r + 1:n
           c(i) = c(i) - A(r,i)^2
     \mathbf{end}
     \tau = \max\{c(r+1), \ldots, c(n)\}\
```

Pivot max in front

Usual QR step

Update norms

- Very reliable in practice to reveal the rank (not guaranteed!)
- Previous algorithm not blocked (BLAS2 geqpf)
- In practice algorithm can be blocked (BLAS3 geqp3)
- Issue:
- 1. Very sequential: Need step < j for step j.
- 2. Small "blocks": 1 column at a time.
- 3. Pivoting: Hard in parallel.

Column pivoting ≈ Range finding



Randomized range approximation

$$\Omega$$
 i.i.d. Gaussian, size $n \times b$
 $B = A\Omega$

$$Q = qr(B)$$
 (random), orthogonal s.t.
range(A) \approx range(Q)

2.

$$B = Q$$

1.

$$B = A \Omega$$

3.

range(
$$Q$$
) $pprox range$ (A)

Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

Randomization is "good enough"

THEOREM 1.1. Suppose that A is a real $m \times n$ matrix. Select a target rank $k \ge 2$ and an oversampling parameter $p \ge 2$, where $k + p \le \min\{m, n\}$. Execute the proto-algorithm with a standard Gaussian test matrix to obtain an $m \times (k+p)$ matrix Q with orthonormal columns. Then Small poly(k), decay w/p

Expectation

$$\mathbb{E} \| \boldsymbol{A} - \boldsymbol{Q} \boldsymbol{Q}^* \boldsymbol{A} \| \leq \left[1 + \frac{4\sqrt{k+p}}{p-1} \cdot \sqrt{\min\{m,n\}} \right] \sigma_{k+1}, \quad \text{"Spectral" accuracy}$$

where \mathbb{E} denotes expectation with respect to the random test matrix and σ_{k+1} is the (k+1)th singular value of \mathbf{A} .

With high probability

As we discuss in §10.3, the probability that the error satisfies

$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \le \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

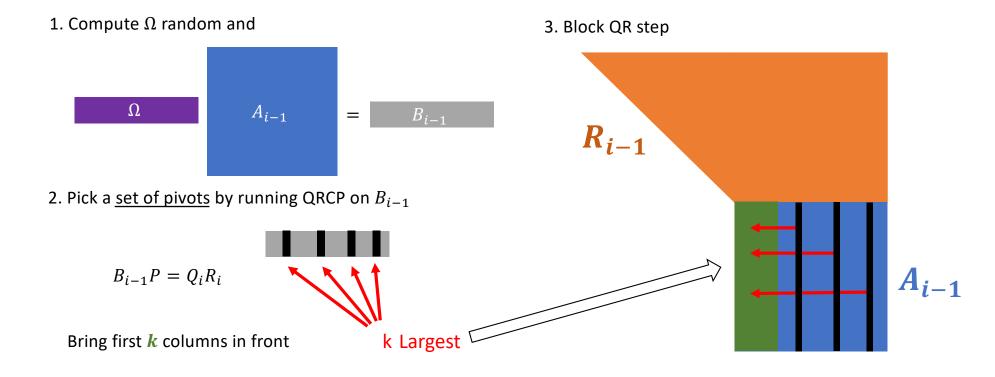
is at least $1 - 6 \cdot p^{-p}$ under very mild assumptions on p.

High probability w/ p

Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

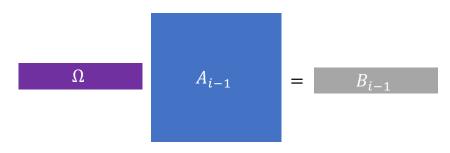
(1) QR w/ randomized block pivoting



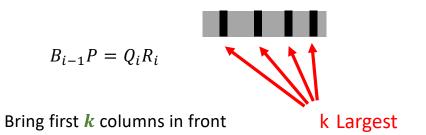
Xiao, Jianwei, Ming Gu, and Julien Langou. "Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations." 2017 IEEE 24th International Conference on High Performance Computing (HiPC). IEEE, 2017.

(1) QR w/randomized block pivoting

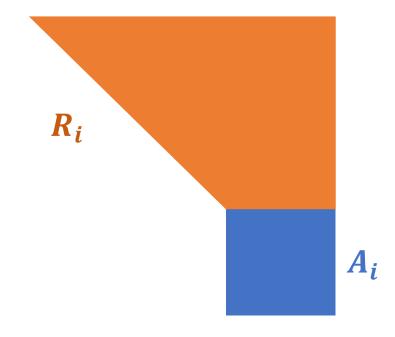
1. Compute Ω random and



2. Pick a set of pivot by running QRCP on B_{i-1}



3. Block QR step



Still lots of pivoting and shuffle. Hard to parallelize.

Xiao, Jianwei, Ming Gu, and Julien Langou. "Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations." 2017 IEEE 24th International Conference on High Performance Computing (HiPC). IEEE, 2017.

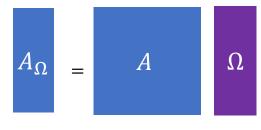
(2) Randomized range approximation

```
We don't really care about R... Build n \times k Gaussian \Omega Form Y = A\Omega Compute Q = qr(Y) Set A \approx QW with W = Q^TA
```

Low-rank

(2) Blocked, adaptive, randomized range approx.

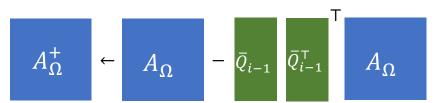
1. Compute $A_{\Omega} = A\Omega$



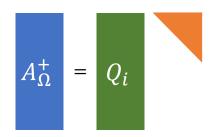
 $range(A_{\Omega}) \approx range(A)$

2. Project* out <u>all</u> previous Q_i 's

$$A_{\Omega}^+ \leftarrow A_{\Omega} - \bar{Q}_{i-1} \bar{Q}_{i-1}^{\mathsf{T}} A_{\Omega}$$



3. QR on A_{Ω}



$$range(Q_i) = range(A_{\Omega}^+)$$

$$= range\left((I - \bar{Q}_{i-1}\bar{Q}_{i-1}^\top)A_{\Omega}\right)$$

$$\approx range\left((I - \bar{Q}_{i-1}\bar{Q}_{i-1}^\top)A\right)$$

4. Repeat

$$\bar{Q}_i = Q_i \bar{Q}_{i-1}$$

* Stability! HH or MGS.

(2) Blocked, adaptive, randomized range approx.

 \boldsymbol{A}

P_0	P_1	P_0	P_1	P_0	P_1
P_2	P_3	P_2	P_3	P_2	P_3
P_0	P_1	P_0	P_1	P_0	P_1
P_2	P_3	P_2	P_3	P_2	P_3
P_0	P_1	P_0	P_1	P_0	P_1
P_2	P_3	P_2	P_3	P_2	P_3

Main operations:

- $B = A\Omega$
- B = QR
- $A^+ = A QQ^TA$

Matrix-matrix. Very parallel.

Block QR, cheap if k not too large

Sequential per column (HH)

All columns independent

References

"Classical" algorithm

 Golub, Gene H., and Charles F. Van Loan. Matrix computations. 4th edition. JHU press, 2013.

Block QRCP

 Quintana-Ortí, Gregorio, Xiaobai Sun, and Christian H. Bischof. "A BLAS-3 version of the QR factorization with column pivoting." SIAM Journal on Scientific Computing 19.5 (1998): 1486-1494.

Parallelization

• Tomás, Andrés, Zhaojun Bai, and Vicente Hernández. "Parallelization of the QR decomposition with column pivoting using column cyclic distribution on multicore and GPU processors." *International Conference on High Performance Computing for Computational Science*. Springer, Berlin, Heidelberg, 2012.

References

Improved column pivoting

- Xiao, Jianwei, Ming Gu, and Julien Langou. "Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations." 2017 IEEE 24th International Conference on High Performance Computing (HiPC). IEEE, 2017.
- Demmel, James W., et al. "Communication avoiding rank revealing QR factorization with column pivoting." *SIAM Journal on Matrix Analysis and Applications* 36.1 (2015): 55-89.
- Martinsson, Per-Gunnar, et al. "Householder QR factorization with randomization for column pivoting (HQRRP)." *SIAM Journal on Scientific Computing* 39.2 (2017): C96-C115.

References

Range approximation

- Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." *SIAM review* 53.2 (2011): 217-288.
- Martinsson, Per-Gunnar. "Randomized methods for matrix computations." *The Mathematics of Data* 25 (2019): 187-231.