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Low-rank approximations

 We know the SVD
A=USV = ULV, ||[A—=UpZ V|2 = 0p11(4)

* |If we add column pivoting to QR, we can do “almost” the same
AP = QR

QTAP = [R11 R12]
Ry,

Low-rank
If ||R52]]2 is small then

A=~ Qi[R11 Rp2]PT HQW
(+) Cheaper than SVD (direct - not "iterative”)

(-) Less reliable
(+) In practice good enough



QRCP

1. Pivot largest column in front
, T, column norms

“Classical algorithm’ om
(Golub & Van Loan,

Algorithm 5.4.1) v
ax

Golub, Gene H., and Charles F. Van Loan.
Matrix computations. 4 edition. JHU press, 2013.
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2. Usual QR step 7, column norms
“Classical algorithm” —
(Golub & Van Loan,

Algorithm 5.4.1)

R;_4

v; = house(a;)
A:. = A; — v.vTA.
l i—1 tYi -1

Golub, Gene H., and Charles F. Van Loan.
Matrix computations. 4 edition. JHU press, 2013.
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3. Update column norms
T, column norms

“Classical algorithm” —
(Golub & Van Loan,

Algorithm 5.4.1)

T]':T]'—

Golub, Gene H., and Charles F. Van Loan.
Matrix computations. 4 edition. JHU press, 2013.



QRCP

for j = 1mn
o(d) = A(t:m, 5)TA(1m, j)
end
gegpf in Lapack r=0
7 = max{c(1),...,¢(n)}
while 7 > 0and r < n
r=r+1
Find smallest k with r <k <n soc(k) = 7.
piv(r) =k . .
Al 1) 4 (LK) Pivot max in front
[v,8] = house(A(r:m,r))
A(rm,rn) = (Im-rs1 — PovT)A(:r:m,rin) Usual QR Step

A(r +Lim,r) = v(2m—-r+1)

fori=r+ Ln

c(i) = c(i) — A(r,i)?
end Update norms

7 = max{c(r +1),...,¢n)}

Golub, Gene H., and Charles F. Van Loan.
Matrix computations. 4 edition. JHU press, 2013.
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* Very reliable in practice to reveal the rank (not guaranteed!)

* Previous algorithm not blocked (BLAS2 - geqpf)
* In practice algorithm can be blocked (BLAS3 - geqp3)

* |ssue:

1. Very sequential: Need step < j for step j.
2. Small “blocks”: 1 column at a time.

3. Pivoting: Hard in parallel.



Column pivoting = Range finding

Pivoting = range approximation
(of trailing matrix)

range(




Randomized range approximation

Qi.i.d. Gaussian, sizen X b

2.
B = AQ ‘
Q = qr(B) (random), orthogonal s.t. =
range(A) ~ range(Q)
3.

1.
H ]

Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.
"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

range( ) = range( A




Randomization is “good enough”

THEOREM 1.1. Suppose that A is a real m X n matriz. Select a target rank
k > 2 and an oversampling parameter p > 2, where k + p < min{m,n}. Execute the
proto-algorithm with a standard Gaussian test matriz to obtain an m x (k + p) matriz

Q with orthonormal columns. Then Small poly(k)’ decay W/ p

i . AWk + 1 :
Expectation E[[A-QQ Al <1+ Tlp - /min{m,n} “Spectral” accuracy

where E denotes expectation with respect to the random test matriz and opyq is the
(k + 1)th singular value of A.

With hlgh As we discuss in §10.3, the probability that the error satisfies
probability |A - QQ*A| < [1 +11y/k + p - /min{m,n}

is at least§1 — 6 - p~? pnder very mild assumptions on p.

High probability w
Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. g p y /p

"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.




(1) QR w/ randomized block pivoting

1. Compute ) random and 3. Block QR step

2. Pick a set of pivots by running QRCP on B;_;

Bring first k columns in front k Largest

Xiao, Jianwei, Ming Gu, and Julien Langou. "Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations."
2017 IEEE 24th International Conference on High Performance Computing (HiPC). |EEE, 2017.



(1) QR w/ randomized block pivoting

1. Compute ) random and 3. Block QR step

- =
R;
2. Pick a set of pivot by running QRCP on B;_;
B;_1P = QiR; "\\\‘
Bring first k columns in front k Largest

Still lots of pivoting and shuffle. Hard to parallelize.

Xiao, Jianwei, Ming Gu, and Julien Langou. "Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations."
2017 IEEE 24th International Conference on High Performance Computing (HiPC). |EEE, 2017.



(2) Randomized range approximation

We don’t really care about R...
Build n X k Gaussian ()

Form Y = A()

Compute Q = qr(Y)

Set A with W=0QTA

Low-rank



(2) Blocked, adaptive, randomized range approx.

1. Compute A = AQ 3.QRon Aq

range(Aq) =~ range(A) range(Q;) = range(AQ)

2. Project* out all previous Q;’s = range (1 - Qi-1Q- 1)Aﬂ)
Aj < Aq — Qi—10,44¢ v range ((I B Q“lQl‘l)A)

T
N N 4. Repeat
4o M 4o - Ao Qi = QiQi-1

* Stability ! HH or MGS.




(2) Blocked, adaptive, randomized range approx.

Main operations:

« B =A0Q

* B=0QR

« AT =A4-00TA

Matrix-matrix. Very parallel.
Block QR, cheap if k not too large
Sequential per column (HH)

All columns independent
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