(Parallel, Randomized) Rank-revealing factorizations

Léopold Cambier

February 2020

QR
for $i=1 \ldots \min (m, n)$

- $v_{i}=\operatorname{house}(A(i: m, i))$
- $A(i: m, i: n)=\left(I-v_{i} v_{i}^{\top}\right) A(i: m, i: n)$

$$
v_{i}=\operatorname{house}\left(a_{i}\right)
$$

$$
A_{i-1}
$$

$$
A_{i}=A_{i-1}-v_{i} v_{i}^{\top} A_{i-1}
$$

QR

for $i=1 \ldots \min (m, n)$

- $v_{i}=\operatorname{house}(A(i: m, i))$
- $A(i: m, i: n)=\left(I-v_{i} v_{i}^{\top}\right) A(i: m, i: n)$
$\boldsymbol{R}_{\boldsymbol{i}}$

Low-rank approximations

- We know the SVD

$$
A=U S V \approx U_{r} \Sigma_{r} V_{r}, \quad\left\|A-U_{r} \Sigma_{r} V_{r}\right\|_{2}=\sigma_{r+1}(A)
$$

- If we add column pivoting to $Q R$, we can do "almost" the same

$$
\begin{gathered}
A P=Q R \\
Q^{\top} A P=\left[\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right]
\end{gathered}
$$

Low-rank
If $\left\|R_{22}\right\|_{2}$ is small then

$$
A \approx Q_{1}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] P^{\top}=Q_{1} W
$$

(+) Cheaper than SVD (direct - not "iterative")
(-) Less reliable
(+) In practice good enough

QRCP

QRCP

QRCP

"Classical algorithm"
3. Update column norms
(Golub \& Van Loan,
Algorithm 5.4.1)

QRCP

geqpf in Lapack

```
for \(j=1: n\)
    \(c(j)=A(1: m, j)^{T} A(1: m, j)\)
end
\(r=0\)
\(\tau=\max \{c(1), \ldots, c(n)\}\)
while \(\tau>0\) and \(r<n\)
    Find smallest \(k\) with \(r \leq k \leq n\) so \(c(k)=\tau\).
    \(\operatorname{piv}(r)=k\)
    \(A(1: m, r) \leftrightarrow A(1: m, k)\)
    \(c(r) \leftrightarrow c(k)\)
    \([v, \beta]=\) house \((A(r: m, r))\)
    \(A(r: m, r: n)=\left(I_{m-r+1}-\beta v v^{T}\right) A(: r: m, r: n)\)
    \(A(r+1: m, r)=v(2: m-r+1)\)
    for \(i=r+1: n\)
        \(c(i)=c(i)-A(r, i)^{2}\)
    end
    \(\tau=\max \{c(r+1), \ldots, c(n)\}\)
```


QRCP

- Very reliable in practice to reveal the rank (not guaranteed!)
- Previous algorithm not blocked (BLAS2 - geqpf)
- In practice algorithm can be blocked (BLAS3 - geqp3)
- Issue:

1. Very sequential: Need step < j for step j.
2. Small "blocks": 1 column at a time.
3. Pivoting: Hard in parallel.

Column pivoting \approx Range finding

Randomized range approximation

Ω i.i.d. Gaussian, size $n \times b$
$B=A \Omega$
$Q=\operatorname{qr}(B)$ (random), orthogonal s.t. $\operatorname{range}(A) \approx \operatorname{range}(Q)$
1.

2.

3.

Randomization is "good enough"

Theorem 1.1. Suppose that \boldsymbol{A} is a real $m \times n$ matrix. Select a target rank $k \geq 2$ and an oversampling parameter $p \geq 2$, where $k+p \leq \min \{m, n\}$. Execute the proto-algorithm with a standard Gaussian test matrix to obtain an $m \times(k+p)$ matrix Q with orthonormal columns. Then Small poly(k), decay w/p
Expectation

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{k+p}}{p-1} \cdot \sqrt{\min \{m, n\}} \sigma_{k+1},\right. \text { "Spectral" accuracy }
$$

where \mathbb{E} denotes expectation with respect to the random test matrix and σ_{k+1} is the $(k+1)$ th singular value of \boldsymbol{A}.

With high
probability
As we discuss in $\S 10.3$, the probability that the error satisfies

$$
\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+11 \sqrt{k+p} \cdot \sqrt{\min \{m, n\}} \sigma_{k+1}\right.
$$

$\begin{array}{ll}\text { is at least } 1-6 \cdot p^{-p} & \text { nnder very mild assumptions on } p . \\ \text { High probability } \mathbf{w} / \mathbf{p}\end{array}$
Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp
"Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

(1) QR w/ randomized block pivoting

1. Compute Ω random and
Ω

2. Block QR step

3. Pick a set of pivots by running QRCP on B_{i-1}

$$
B_{i-1} P=Q_{i} R_{i}
$$

Bring first k columns in front

A_{i-1}

(1) QR w/ randomized block pivoting

1. Compute Ω random and
2. Block QR step

Still lots of pivoting and shuffle. Hard to parallelize.

(2) Randomized range approximation

We don't really care about R...
Build $n \times k$ Gaussian Ω
Form $Y=A \Omega$
Compute $Q=\operatorname{qr}(Y)$
Set $A \approx Q W$ with $W=Q^{\top} A$
Low-rank

(2) Blocked, adaptive, randomized range approx.

1. Compute $A_{\Omega}=A \Omega$

$$
\operatorname{range}\left(A_{\Omega}\right) \approx \operatorname{range}(A)
$$

2. Project* out all previous Q_{i} 's

$$
A_{\Omega}^{+} \leftarrow A_{\Omega}-\bar{Q}_{i-1} \bar{Q}_{i-1}^{\top} A_{\Omega}
$$

3. QR on A_{Ω}

$$
\begin{aligned}
& \operatorname{range}\left(Q_{i}\right)=\operatorname{range}\left(A_{\Omega}^{+}\right) \\
& \quad=\operatorname{range}\left(\left(I-\bar{Q}_{i-1} \bar{Q}_{i-1}^{\top}\right) A_{\Omega}\right) \\
& \quad \approx \operatorname{range}\left(\left(I-\bar{Q}_{i-1} \bar{Q}_{i-1}^{\top}\right) A\right)
\end{aligned}
$$

4. Repeat

$$
\bar{Q}_{i}=Q_{i} \bar{Q}_{i-1}
$$

(2) Blocked, adaptive, randomized range approx.

Main operations:

- $B=A \Omega$
- $B=Q R$
- $A^{+}=A-Q Q^{\top} A$

Matrix-matrix. Very parallel. Block QR, cheap if k not too large
Sequential per column (HH) All columns independent

References

"Classical" algorithm

- Golub, Gene H., and Charles F. Van Loan. Matrix computations. $4^{\text {th }}$ edition. JHU press, 2013.

Block QRCP

- Quintana-Ortí, Gregorio, Xiaobai Sun, and Christian H. Bischof. "A BLAS-3 version of the QR factorization with column pivoting." SIAM Journal on Scientific Computing 19.5 (1998): 1486-1494.

Parallelization

- Tomás, Andrés, Zhaojun Bai, and Vicente Hernández. "Parallelization of the QR decomposition with column pivoting using column cyclic distribution on multicore and GPU processors." International Conference on High Performance Computing for Computational Science. Springer, Berlin, Heidelberg, 2012.

References

Improved column pivoting

- Xiao, Jianwei, Ming Gu, and Julien Langou. "Fast parallel randomized QR with column pivoting algorithms for reliable low-rank matrix approximations." 2017 IEEE 24th International Conference on High Performance Computing (HiPC). IEEE, 2017.
- Demmel, James W., et al. "Communication avoiding rank revealing QR factorization with column pivoting." SIAM Journal on Matrix Analysis and Applications 36.1 (2015): 55-89.
- Martinsson, Per-Gunnar, et al. "Householder QR factorization with randomization for column pivoting (HQRRP)." SIAM Journal on Scientific Computing 39.2 (2017): C96-C115.

References

Range approximation

- Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217288.
- Martinsson, Per-Gunnar. "Randomized methods for matrix computations." The Mathematics of Data 25 (2019): 187-231.

