

An Algebraic Sparsified Nested Dissection Algorithm using Low-Rank Approximations

<u>Léopold Cambier</u>*, Chao Chen*, Eric Darve* Erik Boman†, Sivasankaran Rajamanickam†, Raymond Tuminaro†

* Stanford University (ICME/ME)

† Sandia National Lab

Mathias Conference, Serris, France October 22, 2018

Sparse Linear Systems

We want to solve

$$Ax = b$$

When A of size $N \times N$ is large, SPD and sparse

Bottleneck in many physical applications

Sparse Linear Systems

Direct methods (Sparse) LU + Pre-Ordering (ND)

Incomplete Factorizations
Incomplete LU / Sparsification methods / ...

Iterative methods
CG / GMRES
+ Custom Preco

- Very Robust
- Very Accurate
- Generic
- (Very) Costly

- Tunable Accuracy
- Tunable Cost
- (Fairly) Generic
- Direct method or Preconditioner

- Cheap
- (Very) Specific
- ComplexConvergence
- Need Domain knowledge

Sparse Linear Systems

Nested Dissection

Nested Dissection

Issue: separators are small, but still too big on typical 3D problems

Separator: n^2

Cost: $n^{2 \cdot 3} = N^2$

Sparsification

$$egin{bmatrix} I & A_{sn} \ A_{ww} & A_{wn} \ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

$$A_{sn} = Q_{sc}W_{cn} + \varepsilon$$

$$\begin{bmatrix} I & & & W_{cn} \\ & I & & \varepsilon \\ & & A_{ww} & A_{wn} \\ W_{cn}^{\mathsf{T}} & \varepsilon & A_{nw} & A_{nn} \end{bmatrix} I \underbrace{ \begin{matrix} I & A_{nn} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Sparsified Nested Dissection

For level ℓ , from leaves to top Eliminate interiors at level ℓ Sparsify (Scale & Compress) interfaces at level ℓ

Sparsified Nested Dissection

We effectively build a preconditioner M such that

$$M^{\mathsf{T}}AM \approx I$$

$$M = \prod_{\ell} \left(\prod_{S} Q_{S}^{\mathsf{T}} \prod_{S} E_{S} \right)$$

We then use M as a preconditioner for CG or GMRES.

Different from fast-algebra techniques

Low-Rank Compression: three variants

$$\begin{bmatrix} A_{ss} & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{ns} = \begin{bmatrix} A_{nc} & A_{nc}T_{cf} \end{bmatrix} + \varepsilon$$

$$A_{ns} = \begin{bmatrix} A_{nc} & A_{nc}T_{cf} \end{bmatrix} + \varepsilon$$

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{ns} = \begin{bmatrix} A_{nc} & A_{nc}T_{cf} \end{bmatrix} + \varepsilon$$

$$\begin{bmatrix} A_{sn} & A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{sn} = Q_{sc}W_{cn} + \varepsilon$$

Low-Rank Compression: three variants

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \qquad A_{sn} = Q_{sc}W_{cn} + Q_{sf}W_{fn}$$

$$S_{nn} = A_{nn} - W_{cn}^{\mathsf{T}} W_{cn} - W_{cf}^{\mathsf{T}} W_{cf}$$

Schur Complement over (n,n)

Low-Rank Compression: three variants

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling

$$\varepsilon = 10^{-6} \to 10^{-1}$$

All SPD problems from SuiteSparse

A very ill-conditioned problem

A 'cubic-like' problem

Profiling: RRQR takes (lots) of time

Acknowledgements & Funding

• References:

• K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Communications on Pure and Applied Mathematics, 69 (2016), pp. 1415–1451

• Funding:

- U.S. DOE NNSA under Award Number DE-NA0002373-1, LDRD research grant from Sandia National Laboratories
- Total Innovation Fellowship

