

An Algebraic Sparsified Nested Dissection Algorithm using Low-Rank Approximations

<u>Léopold Cambier</u>* (lcambier@stanford.edu), Chao Chen*, Eric Darve* Erik Boman†, Sivasankaran Rajamanickam†, Raymond Tuminaro†

* Stanford University (ICME/ME), † Sandia National Laboratory

† Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525

Linear Systems

We want to solve Ax = b

Iterative methods **Direct Methods Approximate Factorizations** ILU / ND + H-(Sparse) LU + Ordering + Custom Preconditioner algebra ... - Robust Cheap - Tunable accuracy Specific Accurate - Tunable cost Generic - Relatively generic Costly

Our approach is heavily inspired by K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Communications on Pure and Applied Mathematics, 69 (2016), pp. 1415–1451

Sparse Linear Systems

Nested Dissection

Nested Dissection

Issue: separators are small, but still too big on typical 3D problems

 $N = n^3$

Separator: n^2

Fact. cost: $n^{2\cdot 3} = N^2$

Sparsification I

(1) We start with

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

(2) We then approximate

$$A_{sn} = Q_{sc}W_{cn} + \varepsilon$$
$$Q^{\mathsf{T}}s = f \cup c$$

(3) We end up with

Sparsification I

Sparsification II

(1) We start with

$$egin{bmatrix} A_{SS} & A_{Sn} \ A_{WW} & A_{WN} \ A_{nS} & A_{nW} & A_{nn} \end{bmatrix}$$

(2) We then approximate

$$A_{sn} = {T_{fc} \choose I} A_{cn} + \varepsilon$$
$$s = f \cup c$$

(3) We end up with

$$\begin{bmatrix} C_{ff} & C_{fc} & \varepsilon \\ C_{cf} & A_{cc} & A_{cn} \\ & A_{ww} & A_{wn} \\ \varepsilon & A_{nc} & A_{nw} & A_{nn} \end{bmatrix} C_{f,f} \underbrace{\begin{pmatrix} C_{f,c} & A_{cn} & A_{nw} \\ C_{f,c} & C_{f,c} & C_{f,c} & A_{cn} & A_{nw} \\ C_{f,f} & C_{f,c} & C_{f,c} & C_{f,c} & C_{f,c} \\ C_{f,c} & C_{f,c} & C_{f,c} & C_{f,c} & C_{f,c} \\ C_{f,c} & C_{f,c} & C_{f,c} & C_{f,c} & C_{f,c} \\ C_{f,c} & C_{f,c} & C_{f,c} & C_{f,c} \\ C_{f,f} & C_{f,f} & C_{f,f} & C_{f,c} \\ C_{f,f} & C_{f,f} & C_{f,f} & C_{f,f} \\ C_{f,f} & C_{f,f} \\ C_{f,f} & C_{f,f} & C_{f$$

What do we sparsify?

Interfaces between eliminated-interiors

How do we find those interfaces? Coloring

For level ℓ , from leaves to top Eliminate interiors at level ℓ (Scale &) Sparsify interfaces at level ℓ

We effectively build a preconditioner *P* such that

$$P^{\mathsf{T}}AP \approx I + \varepsilon$$

Where *P* is a sequence (product) of

- Eliminations
- (Scalings)
- Sparsifications

We then use P as a preconditioner for CG

Different from fast-algebra techniques

Sparsification I & II

$$\begin{bmatrix} A_{ss} & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{sn} = \begin{pmatrix} T_{fc} \\ I \end{pmatrix} A_{cn} + \varepsilon$$

$$A_{sn} = {\binom{T_{fc}}{I}} A_{cn} + \varepsilon$$

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{sn} = \begin{pmatrix} T_{fc} \\ I \end{pmatrix} A_{cn} + \varepsilon$$

$$A_{sn} = Q_{sc} W_{cn} + \varepsilon$$

Orthogonal, with scaling, stays SPD

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \qquad A_{sn} = Q_{sc}W_{cn} + Q_{sf}W_{fn}$$

$$S_{nn} = A_{nn} - W_{cn}^{\mathsf{T}} W_{cn} - W_{cf}^{\mathsf{T}} W_{cf}$$

Approximate Schur Complement over (n,n)

Low-Rank Compression: three variants (2D Laplacians)

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling

$$\varepsilon = 10^{-1} \to 10^{-6}$$

SPD problems from SuiteSparse

Interpolative, no scaling
Interpolative, with scaling
Orthogonal, with scaling

SPD problems from SuiteSparse $_{\varepsilon=10^{-2}}^{\text{Interpolative, the scaling}}$ Orthogonal, with scaling

Interpolative, no scaling Interpolative, with scaling

$$\frac{\#\left\{p\in P\left|\frac{CGpv}{CG_p^*}\leq t\right\}\right\}}{\#P}$$

Ice-Sheet modeling $\kappa(A) > 10^{11}$

	spaND					Direct
N	$\mathbf{t_F}$	$\mathbf{t_{S}}$	$n_{\rm CG}$	$\operatorname{size}_{\operatorname{Top}}$	$\mathrm{mem}_{\mathrm{F}}$	$ m t_F + t_S$
	(s.)	(s.)			(10^9)	(s.)
5 layers						
$629544~(16~{\rm km})$	13	3	7	76	0.14	22
$2521872~(8~{\rm km})$	55	20	8	89	0.59	206
$10096080~(4~{\rm km})$	217	115	10	100	2.45	1578
10 layers						
$1154164\ (16\ \mathrm{km})$	39	8	7	136	0.41	90
$4623432~(8~{\rm km})$	148	44	8	148	1.68	710
$18509480~(4~{\rm km})$	798	384	10	159	6.86	_

The SPE problem

Profiling: main cost is RRQR

Optimum is to skip sparsification for levels 1 to 4

Acknowledgements & Funding

• References:

• K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Communications on Pure and Applied Mathematics, 69 (2016), pp. 1415–1451

• Funding:

• U.S. DOE NNSA under Award Number DE-NA0002373-1, LDRD research grant from Sandia National Laboratories