

An Algebraic Sparsified Nested Dissection Algorithm using Low-Rank Approximations

<u>Léopold Cambier</u>* (lcambier@stanford.edu), Chao Chen*, Eric Darve* Erik Boman⁺, Sivasankaran Rajamanickam⁺, Raymond Tuminaro⁺

* Stanford University (ICME/ME), + Sandia National Laboratory

Conference on Fast Direct Solvers, Purdue University, November 9, 2018

 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525

Linear Systems

We want to solve Ax = b

Direct Methods	Approximate Factorizations	Iterative methods
(Sparse) LU + Ordering	ILU / ND + <i>H</i> - algebra	+ Custom Preconditioner
 Robust Accurate Generic Costly 	Tunable accuracyTunable costRelatively generic	CheapSpecific

Our approach is heavily inspired by K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Communications on Pure and Applied Mathematics, 69 (2016), pp. 1415–1451

Sparse Linear Systems

Nested Dissection

Nested Dissection

Issue: separators are small, but still too big on typical 3D problems

Sparsification I

(1) We start with

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

(2) We then approximate

$$A_{sn} = Q_{sc}W_{cn} + \varepsilon$$
$$Q^{\mathsf{T}}s = f \cup c$$

(3) We end up with

Sparsification I

Sparsification II

(1) We start with

$$\begin{bmatrix} A_{ss} & & A_{sn} \\ & A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix}$$

(2) We then approximate

$$A_{sn} = \begin{pmatrix} T_{fc} \\ I \end{pmatrix} A_{cn} + \varepsilon$$
$$s = f \cup c$$

(3) We end up with

What do we sparsify?

Interfaces between eliminated-interiors

How do we find those interfaces? Coloring

Sparsified Nested Dissection

For level ℓ, from leaves to top Eliminate interiors at level ℓ (Scale &) Sparsify interfaces at level ℓ

Sparsified Nested Dissection

We effectively build a preconditioner *P* such that

 $P^{\mathsf{T}}AP \approx I + \varepsilon$

Where *P* is a sequence (product) of

- Eliminations
- (Scalings)
- Sparsifications

We then use *P* as a preconditioner for CG

Different from fast-algebra techniques

Sparsification I & II

$$\begin{bmatrix} A_{ss} & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{sn} = \begin{pmatrix} T_{fc} \\ I \end{pmatrix} A_{cn} + \varepsilon$$

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \quad A_{sn} = \begin{pmatrix} T_{fc} \\ I \end{pmatrix} A_{cn} + \varepsilon$$

$$A_{sn} = Q_{sc} W_{cn} + \varepsilon$$

Orthogonal, with scaling, stays SPD

$$\begin{bmatrix} I & A_{sn} \\ A_{ww} & A_{wn} \\ A_{ns} & A_{nw} & A_{nn} \end{bmatrix} \qquad A_{sn} = Q_{sc}W_{cn} + Q_{sf}W_{fn}$$

$$S_{nn} = A_{nn} - W_{cn}^{\mathsf{T}} W_{cn} - W_{cf}^{\mathsf{T}} W_{cf}$$

Approximate Schur Complement over (n,n)

Low-Rank Compression: three variants (2D Laplacians)

Interpolative, no scaling Interpolative, with scaling Orthogonal, with scaling

$$\varepsilon = 10^{-1} \rightarrow 10^{-6}$$

Interpolative, no scaling Interpolative, with scaling Orthogonal, with scaling

SPD problems from SuiteSparse

Interpolative, no scaling SPD problems from SuiteSparse $C_{\varepsilon = 10^{-2}}$ Orthogonal, with scaling Interpolative, with scaling

Fraction of problems solved

Perf ratio(t) =

Ice-Sheet modeling $\kappa(A) > 10^{11}$

 10^{-1}

16km

8km

4km

 $16 \mathrm{km}$

8km

4km

The SPE problem

Top separator block would be 32 GB without the sparsification!

Profiling: main cost is RRQR

Optimum is to skip sparsification for levels 1 to 4

Acknowledgements & Funding

- References:
 - K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Communications on Pure and Applied Mathematics, 69 (2016), pp. 1415–1451
- Funding:
 - U.S. DOE NNSA under Award Number DE-NA0002373-1, LDRD research grant from Sandia National Laboratories