

PDE's \approx sparse Ax = b

$$eglinear -
abla \cdot (a(x)
abla u(x)) = f(x) \Rightarrow -U_{i-1} + 2U_i - U_{i+1} = f_i$$

 $\Rightarrow Ax = b$

Nested Dissection & Linear Systems

Find sets of rows/cols L, R and S and order A such that

$$A = \begin{bmatrix} A_{LL} & A_{LS} \\ & A_{RR} & A_{RS} \\ A_{SL} & A_{RS} & A_{SS} \end{bmatrix}$$

Then eliminate L and R. This creates fill-in on A_{SS} .

Same procedure is recursively applied on L and R. Issue? On "3D graphs" of size $N \approx n^3$, separators have size $N^{2/3} = n^2$. Hence, since A_{ss} is typically dense, the cost of the last elimination is $N^{2/3\cdot 3} = N^2$. Too much.

Sparsification

Select p, a set of rows/cols at the interface between two eliminated interiors. Scale A_{pp} to I using Cholesky. Then consider all their neighbors n of p and approximate $A_{pn} \approx Q_c W_{cn} + Q_f W_{fn}$ with $\|W_{fn}\| \approx \varepsilon$. Then

$$\begin{bmatrix} Q^{T} \\ I \end{bmatrix} \begin{bmatrix} I & A_{pn} \\ A_{np} & A_{nn} \end{bmatrix} \begin{bmatrix} Q \\ I \end{bmatrix} = \begin{bmatrix} I & \varepsilon \\ I & W_{cn} \\ \varepsilon & W_{nc} & A_{nn} \end{bmatrix}$$

The size of p has been reduced to |c|, the ε -rank of A_{pn} .

A sparsified nested dissection algorithm

Léopold Cambier^{*}, Eric Darve^{*}, Chao Chen[‡] Siva Rajamanickam[†], Erik Boman[†], Raymond Tuminaro[†] *Stanford University, [‡] University of Texas at Austin, [†]Sandia National Laboratories

> After the sparsification, all clusters & edges are smaller, but the matrix connectivity is unchanged. In particular, no fill-in is introduced.

> > Before sparsification

After sparsification

Matrix graph

Trailing matrix

Elliptic PDEs (SPD)

Theorem: if A is SPD, for all $\varepsilon \geq 0$, the factorization never breaks down. • For 2D graphs, top separator size becomes $pprox \mathcal{O}\left(1
ight)$ (vs $\mathcal{O}\left(\textit{N}^{1/2}
ight)$) • For 3D graphs, top separator size becomes $\approx \mathcal{O}\left(N^{1/3}\right)$ (vs $\mathcal{O}\left(N^{2/3}\right)$). A very ill-conditioned 2D problem, modeling ice-flows on Antarctica

	spaND				
N	t _F	ts	n_{CG}	size _{Top}	mem _F
	(s.)	(s.)			(10^9)
5 layers					
629544 (16 km)	6	3	7	78	0.15
2521872 (8 km)	27	19	8	88	0.63
10096080 (4 km)	107	114	10	99	2.61
10 layers					
1154164 (16 km)	24	8	8	137	0.42
4623432 (8 km)	94	44	8	147	1.73
18509480 (4 km)	500	384	10	159	7.59

General matrices

For problems with pprox symmetric sparsity patterns, the same algorithm can be applied with some changes:

- Scale pivot from A_{pp} to I using SVD or full-pivoting LU. Partial pivoted LU can amplify low-rank approximation errors excessively.
- Compress both lower and upper parts $Q_c \left[W_{cn} W_{nc}^{\top} \right] \approx \left[A_{pn} A_{np}^{\top} \right]$

References & Acknowledgements

L. Cambier, C. Chen, E. G. Boman, S. Rajamanickam, R. S. Tuminaro, and E. Darve. An algebraic sparsified nested dissection algorithm using low-rank approximations. arXiv preprint arXiv:1901.02971, 2019. Work funded by Sandia National Laboratories and Total

