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PDE’s ≈ sparse Ax = b

−∇ · (a(x)∇u(x)) = f (x)⇒ −Ui−1 + 2Ui − Ui+1 = fi
⇒ Ax = b

Nested Dissection & Linear Systems

Find sets of rows/cols L, R and S and order A such that
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Then eliminate L and R . This creates fill-in on ASS.

L RS

Same procedure is recursively applied on L and R . Issue? On "3D graphs"
of size N ≈ n3, separators have size N2/3 = n2. Hence, since Ass is typically
dense, the cost of the last elimination is N2/3·3 = N2. Too much.

Sparsification

Select p, a set of rows/cols at the interface between two eliminated interi-
ors. Scale App to I using Cholesky. Then consider all their neighbors n of
p and approximate Apn ≈ QcWcn + Qf Wfn with ‖Wfn‖ ≈ ε. Then[
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The size of p has been reduced to |c|, the ε-rank of Apn.

After the sparsification, all clusters & edges are smaller, but the matrix
connectivity is unchanged. In particular, no fill-in is introduced.
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Elliptic PDEs (SPD)

Theorem: if A is SPD, for all ε ≥ 0, the factorization never breaks down.
• For 2D graphs, top separator size becomes ≈ O (1) (vs O

(
N1/2

)
)

• For 3D graphs, top separator size becomes ≈ O
(
N1/3

)
(vs O

(
N2/3

)
).

A very ill-conditioned 2D problem, modeling ice-flows on Antarctica

spaND
N tF tS nCG sizeTop memF

(s.) (s.) (109)
5 layers
629 544 (16 km) 6 3 7 78 0.15
2 521 872 (8 km) 27 19 8 88 0.63
10 096 080 (4 km) 107 114 10 99 2.61
10 layers
1 154 164 (16 km) 24 8 8 137 0.42
4 623 432 (8 km) 94 44 8 147 1.73
18 509 480 (4 km) 500 384 10 159 7.59

General matrices

For problems with ≈ symmetric sparsity patterns, the same algorithm can
be applied with some changes:
• Scale pivot from App to I using SVD or full-pivoting LU. Partial pivoted
LU can amplify low-rank approximation errors excessively.
• Compress both lower and upper parts Qc

[
WcnW>

nc
]
≈
[
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]
Advection-diffusion (unsymmetric)

3D: − a∇u + b · ∇u = f , u|Ω = 0
Boundary value problem.
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2D+time: ∂u
∂t = b · ∇u, periodic BCs

Implicit Euler with time step dt, spatial discretization using DG with dx ≈
1/N1/2.
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