A sparsified nested dissection algorithm

Léopold Cambier*, Eric Darve*, Chao Chen ${ }^{\ddagger}$

Siva Rajamanickam ${ }^{\dagger}$, Erik Boman ${ }^{\dagger}$, Raymond Tuminaro

*Stanford University, \ddagger University of Texas at Austin, †'Sandia National Laboratories

PDE's \approx sparse $A x=b$

$$
\begin{aligned}
-\nabla \cdot(a(x) \nabla u(x))= & f(x) \Rightarrow-U_{i-1}+2 U_{i}-U_{i+1}=f_{i} \\
& \Rightarrow A x=b
\end{aligned}
$$

Nested Dissection \& Linear Systems
Find sets of rows/cols L, R and S and order A such that

$$
A=\left[\begin{array}{ccc}
A_{L L} & & A_{L S} \\
& A_{R R} & A_{R S} \\
A_{S L} & A_{R S} & A_{S S}
\end{array}\right]
$$

Then eliminate L and R. This creates fill-in on $A_{S S}$

Same procedure is recursively applied on L and R. Issue? On "3D graphs" of size $N \approx n^{3}$, separators have size $N^{2 / 3}=n^{2}$. Hence, since $A_{s s}$ is typically dense, the cost of the last elimination is $N^{2 / 3 \cdot 3}=N^{2}$. Too much.

Sparsification
Select p, a set of rows/cols at the interface between two eliminated interiors. Scale $A_{p p}$ to I using Cholesky. Then consider all their neighbors n of p and approximate $A_{p n} \approx Q_{c} W_{c n}+Q_{f} W_{f n}$ with $\left\|W_{f n}\right\| \approx \varepsilon$. Then

$$
\left[\begin{array}{ll}
Q^{T} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & A_{p n} \\
A_{n p} & A_{n n}
\end{array}\right]\left[\begin{array}{ll}
Q & \\
& \\
&
\end{array}\right]=\left[\begin{array}{ccc}
I & & \varepsilon \\
& I & W_{c n} \\
\varepsilon & W_{n c} & A_{n n}
\end{array}\right]
$$

The size of p has been reduced to $|c|$, the ε-rank of $A_{p n}$.

After the sparsification, all clusters \& edges are smaller, but the matrix connectivity is unchanged. In particular, no fill-in is introduced.

Before sparsification
After sparsification

Elliptic PDEs (SPD)
Theorem: if A is SPD, for all $\varepsilon \geq 0$, the factorization never breaks down - For 2D graphs, top separator size becomes $\approx \mathcal{O}(1)\left(\right.$ vs $\left.\mathcal{O}\left(N^{1 / 2}\right)\right)$

- For 3D graphs, top separator size becomes $\approx \mathcal{O}\left(N^{1 / 3}\right)\left(\right.$ vs $\left.\mathcal{O}\left(N^{2 / 3}\right)\right)$.

A very ill-conditioned 2D problem, modeling ice-flows on Antarctica

General matrices

For problems with \approx symmetric sparsity patterns, the same algorithm can be applied with some changes

Scale pivot from $A_{p p}$ to I using SVD or full-pivoting LU. Partial pivoted LU can amplify low-rank approximation errors excessively.

- Compress both lower and upper parts $Q_{c}\left[W_{c n} W_{n c}^{\top}\right] \approx\left[A_{p n} A_{n p}^{\top}\right]$

> Advection-diffusion (unsymmetric)

$$
\text { 3D: }-a \nabla u+b \cdot \nabla u=f,\left.u\right|_{\Omega}=0
$$

Boundary value problem.

$$
2 \mathrm{D}+\text { time: } \frac{\partial u}{\partial t}=b \cdot \nabla u, \text { periodic } \mathrm{BCs}
$$

Implicit Euler with time step $d t$, spatial discretization using DG with $d x \approx$ $1 / N^{1 / 2}$

References \& Acknowledgements
L. Cambier, C. Chen, E. G. Boman, S. Rajamanickam, R. S. Tuminaro and E. Darve. An algebraic sparsified nested dissection algorithm using low-rank approximations. arXiv preprint arXiv:1901.02971, 2019. Work funded by Sandia National Laboratories and Total

Sandia National

Laboratories

