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Abstract

Linear solvers are a key component of scientific computing. In Chapter 2 we develop a

new algorithm for the fast solution of large, sparse linear systems, spaND (sparsified Nested

Dissection). spaND uses low-rank approximations to reduce the size of the Nested Dissection

separators without creating any fill-in. The result is an approximate factorization that

can be used as an e�cient preconditioner. Unlike many preconditioners, spaND works

on a large class of matrices. We perform several numerical experiments to evaluate this

algorithm. We demonstrate that a version using orthogonal factorization and block-diagonal

scaling takes fewer CG iterations to converge than the previously developed Hierarchical

Interpolative Factorization algorithm on nearly all SPD problems from the SuiteSparse

matrix collection. Furthermore, we prove that this algorithm is guaranteed to never break

down if the input matrix is SPD. We evaluate the algorithm on some large problems, both

SPD and unsymmetric, and show that it exhibits near-linear scalings.

In Chapter 3, we tackle the problem of task-based parallel computing. Runtime systems,

where the user expresses computations as tasks with inputs and outputs, o↵er a solution to

programming increasingly large and complex modern computers. However, their adoption

has been so far very limited. In this work, we present TaskTorrent, a lightweight distributed

task-based runtime in C++. TaskTorrent uses a parametrized task graph to express the task

DAG, and one-sided active messages to trigger remote tasks asynchronously. TaskTorrent

is very easy to learn, easy to integrate into existing codes, and has minimal overhead.

We explain the API and the implementation. We perform a series of benchmarks against

StarPU, Regent and ScaLAPACK. Both TaskTorrent and StarPU outperform ScaLAPACK,

and TaskTorrent exhibits good strong and weak scalings. We then combine TaskTorrent

with spaND in Chapter 4, explain the implementation, and run the resulting algorithm

on a few large problems, e�ciently using up to 9000 cores. This shows that spaND scales

very well when the ranks grow slowly with the problem size and that TaskTorrent has no
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problems exploring very large DAGs.

In Chapter 5, we study the problem of kernel matrix factorization. In this work, we de-

velop the Skeletonized Interpolation algorithm, a new way to build a low-rank factorization

of kernel matrices. This is done by first sampling the kernel function at new interpolation

points, then selecting a subset of those using a CUR decomposition, and finally using this

reduced set of points as pivots for a rank-revealing LU-type factorization. We explain how

this implicitly builds an optimal interpolation basis for the kernel under consideration and

show the asymptotic convergence of the algorithm. Finally, we demonstrate on numerical

examples that it performs very well in practice, allowing us to obtain ranks nearly equal to

the optimal rank at a fraction of the cost of the naive algorithm.

Finally, in Chapter 6, we study a parametrized least-square problem argminx2S k(A +

!I)�1/2(Ax � b)k2 for A = A⇤, ! > ��min(A) and S a subspace. We show that the

solutions xb,! belong to a low-dimensional subspace, independent from b and !, of dimension

IndA(S) = dim(S + AS)� dim(S), a quantity we call the index of invariance. This result

implies the low-dimensionality result from Hallman & Gu (2018). We furthermore study

the tightness of the bound, and show that {xb,!�xb,µ | !, µ} can have dimension 1 for all b

even if IndA(S) > 1. Finally, we exhibit su�cient conditions on A (such as A being SPD)

such that {xb,! � xb,µ | b,!, µ} has dimension IndA(S).
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Chapter 1

Introduction

Scientific computing is a field of science combining mathematical models and computer

simulations to analyze or predict natural phenomena. This encompasses many disciplines,

such as finance, weather predictions, computational biology, computational fluid dynamics,

and many more.

Sparse linear systems At the core of many of those applications, one can often find a

linear system such as

Ax = b (1.1)

(where A 2 RN⇥N and b 2 RN are given and x 2 RN is the unknown). A frequent reason

is that the model requires solving a partial di↵erential equation (PDE). For instance, in its

simplest form, one can model the di↵usion of heat by solving (r · (ru))(x) = f(x) for all

x 2 ⌦ with suitable boundary conditions. This is an example of an elliptic PDE. One way

to solve this is to discretize it using finite di↵erences or finite-elements [105]. This results

in a linear system such as (1.1) where A is sparse, symmetric, and positive definite (SPD).

Many other PDEs are frequently encountered in practice. For instance, in Section 2.4 we

consider a Stokes formulation for the movement of ice in Antarctica (an ice-sheet model)

discretized using a finite-element method. Those equations are non-linear because of a

modeling assumption on the viscosity. Solving those equations using Newton’s method

leads to a sequence of sparse linear systems which are SPD. In Section 4.3 we study similar

equations in the context of a subsonic flow around an airfoil. Those non-linear equations

lead to a sequence of non-symmetric linear systems. In addition to PDEs, linear systems

1



CHAPTER 1. INTRODUCTION 2

also occur in inverse problems [141], optimization [115], ordinary di↵erential equations and

dynamical systems [105], graph theory [48], etc. Solving sparse linear systems is at the core

of most scientific applications. In this thesis, we focus on linear systems coming from PDEs

since they exhibit specific properties that allow for fast algorithms. Solving them often

takes most of the overall simulation time, especially on modern machines [10]. As such, this

requires e�cient algorithms.

Much e↵ort has been dedicated to finding e�cient algorithms to solve (1.1) when A is

large and sparse. Linear solvers can roughly be divided into three categories (see Figure 1.1):

1. Sparse direct methods (Figure 1.1, left), such as the sparse LU or sparse Cholesky [52],

with a suitable ordering such as Nested Dissection (see Section 2.2.1). These methods

are attractive because they can factor almost any matrix exactly into a product of

triangular L and U such that A = LU . Solving (1.1) can then be done e�ciently

through forward and backward substitution. However, when A 2 RN⇥N comes from

a 3D PDE discretized with a local stencil, fill-in can be significant. This usually leads

to a O
�
N2

�
time complexity, making them prohibitively expensive even for moderate

N .

2. Iterative methods, such as CG [91], MINRES [118], or GMRES [132], combined with a

problem-dependent preconditioner (such as Multigrid [28, 29, 143] for elliptic PDEs —

Figure 1.1, right). Iterative methods are attractive because they only require matrix-

vector products Av. However, when A is ill-conditioned, as it is often the case in

practice, they converge very slowly. Hence, a problem-dependent preconditioner is

needed to keep the iteration count low. The di�culty with this approach is that it

requires domain knowledge to design an e�cient preconditioner, and what works on

a particular problem may not work on a di↵erent but similar one.

3. Incomplete or approximate factorizations (Figure 1.1, center). This approach consists

of computing an approximate factorization of A. For instance, incomplete LU (ILU,

[133]) computes A ⇡ LU using a classical LU algorithm but drops some of the fill-ins

to not have more than k (for some k) entries per row or column of L and U . The

approximate factorization can then be used as a preconditioner within an iterative

method. Incomplete factorizations are appealing because they don’t rely on an expert

user and can in theory be applied to any matrix. However, methods such as ILU, when

used as a preconditioner, typically lead to an iteration count that grows significantly
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A

L,A = LL> T,A ⇡ TT>

Direct methods
Incomplete factorizations

+ iterative method
Custom preconditioner
+ iterative method

Figure 1.1: Various methods to solve linear systems. We here assume the matrix is SPD.
Left: direct methods, that compute L such that A = LL>. Center: incomplete factoriza-
tions, similar to direct methods but with appropriate approximations to make the algorithm
faster. Computes L such that A ⇡ LL>. Usually combined with an iterative method. Right:
custom preconditioners (Multigrid depicted), combined with an iterative method. Usually
very problem dependent.

with N and, as such, do not scale well with problem size.

In this work, we follow the third approach. The goal is to design an approximate

factorization M of A such that M ⇡ A and where M is sparse, fast to compute, and fast

to invert (i.e., solving Mx = b should be fast). By fast we refer to O(N) or O(N logN)

time complexities. The approximation should also be accurate enough to lead to a low

and slowly-growing iteration count when combined with an iterative method such as CG or

GMRES.

To do so, we rely on the properties of the underlying PDE. By using appropriate low-

rank approximations, we directly eliminate, without creating any fill-ins, many unknowns

in the system. The algorithm does not use any particular hierarchical matrix format (see

Section 2.1.2) and is a conceptually simple but fast algorithm. We call this algorithm spaND
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(Sparsified Nested Dissection) and explain it in detail in Chapter 2. In Chapter 4 we study

the parallel properties of the algorithm when combined with a task-based runtime system.

Dense linear systems While many linear systems are sparse, dense linear systems do

also arise. For instance, the equation

�(x) =
µ

4⇡

Z

Y

K (x, y)k(y)dy for all x 2 X , (1.2)

with K (x, y) = 1/kx � yk2 (the kernel function) is a classical boundary integral equation

arising in electromagnetics [104]. Similar integral equations also arise in acoustics [152] and

other applications. Those equations may also involve K (x, y) = log(kx� yk2), K (x, y) =

1/kx � yk22 or other kernel functions. Given the infinite support of K and the integral,

discretization of (1.2) leads to linear systems Au = b where A 2 RN⇥N is dense. Upon

discretization we have Aij = K (xi, yj) for xi 2 X and yj 2 Y. However, while dense,

this matrix has a lot of structure. For properly chosen subsets X ✓ X and Y ✓ Y, the

corresponding block K of A has a low numerical rank.

This low-rank property leads to e�cient data-sparse representations of A. Figure 1.2a

shows a clustering of a square mesh X , in which each square indicates a cluster of points.

Figure 1.2b shows A, in which points belonging to the same cluster are ordered consecutively

in the matrix. Each block corresponds to the interactions between a pair of clusters of X .

Blocks in green correspond to interactions between well-separated clusters and are low-

rank. Blocks in yellow and blue are not. We see that the low-rank property lets us store

the matrix at a reduced cost since each block of size n⇥ n and rank r can be stored using

O(nr) memory instead of O
�
n2
�
. This also allows for faster factorizations (such as LU)

or matrix-vector computations. Finally, note that other more complex representations are

possible. Using hierarchical matrices (H-matrices) leads to a matrix like in Figure 1.2b but

where not all blocks have the same size.

Regardless of the format used, all those data-sparse representations require the low-

rank blocks to be first factored into a low-rank form. This is the focus of this chapter. To

simplify the discussion, let us focus on a specific block K 2 Rn⇥n of rank r of A, defined

as Kij = K (xi, yj) for xi 2 X, yj 2 Y . We could use the SVD to compute a low-rank

approximation of K, at a cost of O
�
n2r

�
. However, in this work, we seek to avoid the O

�
n2
�

time complexity. This implies that we cannot even build K. To do so, we designed the
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(a) A clustering of the mesh X

over which (1.2) is discretized.
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(b) A block low-rank representation
of A. Green blocks correspond to
interactions between well-separated
clusters and are low-rank.

Skeletonized Interpolation (SI) algorithm, which can build a low-rank approximation of K

with O(nr) time complexity. SI is completely independent of the actual point distributions

within the clusters associated with K and only relies on their geometry. Chapter 5 explains

in detail the algorithm, includes a proof of correctness under some assumptions, and finally

contrasts it to existing approaches, such as ACA, demonstrating its improved robustness.

Iterative methods Solving sparse linear systems often requires combining multiple tech-

niques. Algorithms like spaND can be used to approximately solve Ax = b, by computing an

approximate factorization A ⇡ LU and then solving LUx = b. But iterative methods need

to be used to fully solve the system. Those algorithms repeatedly solve related problems

where x belongs to a larger and larger subspace, hence computing an increasingly accurate

solution to (1.1). Various methods exist. CG [91] and MINRES [118] are amongst the most

popular methods when A is symmetric.

In Chapter 6 we perform a theoretical study of a family of iterative algorithms —a

family which includes CG and MINRES, showing that the solutions belong to a smaller

space than what can normally be expected. More precisely, for a particular A 2 Fn⇥n,

b 2 Fn, and S ✓ Fn a subspace (with F = R or C), we consider the problem

xb,! := argminx2S k(A+ !I)�1/2(Ax� b)k2 (1.3)

with ! > !min := ��min(A). Note that if S = K(A, b, k) is the kth Krylov subspace, as
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! = 0, one recovers the CG iterate, and as ! !1, one recovers MINRES.

We study the iterates xb,! in detail and show that they actually belong not only to S,
as expected, but also to a low-dimensional subspace Y, independent from b and !, with

dim(Y)  IndA(S) := dim(S + AS) � dim(S), a quantity we call the index of invariance

of a matrix A with respect to a subspace S. This result generalizes and explains a sur-

prising result in [89], where the authors studied (1.3) when S = K(A, b, k) and where they

found that the iterates belong to a one-dimensional subspace. Our result goes further, by

generalizing the subspace into consideration. Finally, we also study the converse, i.e., when

do the iterates fill the space. We show that it does not happen in general, but show su�-

cient conditions under which {xb,! | b,! > !min} fills the space. This result could be used

to e�ciently solve related problems, such as weighted least squares problems with linear

constraints.

Parallel Computing Finally, e�ciently exploiting computer resources is critical to solv-

ing large problems. It is now well known that CPU clocks have stopped increasing according

to Moore’s law [114] for many years. As such, programmers and scientists cannot rely on

forever-increasing single-threaded performance to run larger and larger problems. The only

way to run large computations is then to leverage parallel machines with many cores and

other computing units (GPUs, etc.). Those can be on one physical machine or distributed

across an entire cluster. E�ciently using all those available resources is the topic of parallel

computing.

Parallel computing is not new. MPI 1.0 was formally published in 1994 [66], to pro-

gram parallel algorithms using a distributed memory model. Similarly, the OpenMP 1.0

Fortran API specification was published in 1997 [21], to program multi-core shared-memory

machines. However, both methods typically lead to fork-join (for OpenMP) or bulk-

synchronous (for MPI) algorithms and programs. This typically creates many unnecessary

synchronization points, where the algorithm is artificially waiting.

In addition, modern machines are becoming increasingly complex. They have deep

memory hierarchies, from various levels of caches to separate NUMA nodes. Computing

clusters have many nodes, equipped with CPUs with an increasing number of cores. Finally,

accelerators (such as GPUs) are also becoming more and more common, supplementing

multicore CPUs. As such, it is becoming increasingly complex to program algorithms for

such architectures.
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Runtime systems propose one solution to those problems. Instead of a fork-join or

bulk-synchronous approach, computations are expressed as small tasks, with dependencies

between them. The runtime system is then in charge of scheduling those tasks on the ma-

chine, avoiding synchronization altogether, and exploiting available resources as much as

possible. Some runtime systems can even automatically generate code to leverage acceler-

ators, such as GPUs, as well.

Many solutions have been proposed in the last 10 to 15 years. Section 3.2 highlights

some of them. However, none has yet gained enough popularity to replace something like

MPI and/or OpenMP. We believe the following features are often lacking and are required

for the wide adoption of new solutions.

• It needs an easy-to-use API, not requiring the user to give away control of data

structures and not requiring the user to learn a new programming language.

• It should only use standard tools such as MPI and C++ and be designed to enable

incremental adoption in existing codebases. For instance, one should be able to use

the runtime only in select portions of the code.

• It should be lightweight, to not lose performance when tasks are short or granularity

is not optimal.

To address those requirements, we designed TaskTorrent (TTor). TTor addresses the above

concerns in the following way.

• It has an easy-to-use API, is entirely written in C++, and is compatible with any

user data.

• It requires only MPI and C++ and is based on the message-passing paradigm. So it

is compatible with most existing codes and can be introduced step by step, in select

portions of the code only.

• It uses a Parametrized Task Graph (PTG) approach with Active Messages (AM). As

such, the task graph (the DAG) is entirely distributed and explored completely in

parallel. Hence the runtime is lightweight and the code scales very well even with

small tasks.
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Parallel
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Skeletonized
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Index of
invariance
(Chapter 6)

TaskTorrent
(Chapter 3)

Parallel
spaND
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Figure 1.2: The five chapters of this thesis and their connections to each other.

We explain TTor’s API and implementation in detail in Chapter 3. We then show that this

approach of combining PTG and AMs scales well and is competitive with existing state-

of-the-art runtimes such as StarPU and Regent, by comparing them on a few large linear

algebra problems. This shows that a simple approach, with a friendly API, can perform

well in practice. Finally, we combine TaskTorrent with spaND in Chapter 4. This allows

us to study spaND’s e�ciency on very large problems with up to 300M degrees of freedom.

Structure of this thesis It can be seen that this work contains related, but distinct,

topics. The central thread is the e�cient solution of linear systems, from both an algorithmic

(exploiting sparsity and low-rank approximations) and practical (using parallel algorithms)

standpoints. Figure 1.2 shows how each topic relates to each other.



Chapter 2

Sparsified Nested Dissection

Part of this chapter contains the full text of [32]. This work is © 2020 Society for Industrial

and Applied Mathematics. Reprinted, with permission. All rights reserved.

2.1 Introduction

We are interested in solving large sparse linear systems

Ax = b, A 2 RN⇥N (2.1)

where A is SPD, symmetric, or unsymmetric, but with a symmetric (or near-symmetric)

sparsity pattern. In particular, we focus on linear systems with similar properties as those

arising from the discretization of partial di↵erential equations, using finite di↵erence or finite

elements for instance. Solving such systems is a crucial part of many scientific simulations.

Algorithms for solving Equation (2.1) are traditionally divided into three categories.

On one hand are direct methods. The naive Cholesky or LU factorization can lead to a

factorization cost of O
�
N3

�
(with O

�
N2

�
memory use) due to fill-in in the factor L. When

the matrix A comes from the discretization of PDE’s in 2D or 3D space, one usually uses

the Nested Dissection [109] ordering to reduce fill-in. By doing so, the time complexity is

typically reduced to O
�
N3/2

�
(in 2D) and O

�
N2

�
(in 3D), with the memory complexity

reduced to O(N logN) (in 2D) and O
�
N4/3

�
(in 3D) [71, 109]. This is what most state-of-

the-art direct solvers are built upon [44, 8, 90]. Those algorithms work very well for most

moderate-size problems. However, the O
�
N2

�
complexity in 3D makes them intractable on

9
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large-scale problems.

An alternative is to use iterative algorithms like Krylov methods or multigrid. Multigrid

[62, 28, 84] (and its algebraic version, [29, 143]) works very well on fairly regular elliptic

PDEs, usually with a near-constant iteration count and O(N) memory use regardless of the

problem size. However, it can solve only a fairly limited range of problems and its iteration

count can start growing when the problem becomes ill-conditioned. Krylov methods, such

as CG [91, 150], MINRES [118] or GMRES [132] can be applied to a very wide range of

problems, necessitating only sparse matrix-vector products. However, to converge at all,

one needs to always couple them with an e�cient preconditioner. This is typically a very

problem-dependent task.

One way, however, to build preconditioners is using incomplete factorizations and low-

rank approximations. Incomplete factorization algorithms are built on top of a classical

matrix factorization algorithm. Incomplete LU (ILU), for instance, starts with a classical

LU algorithm and ignores some of the fill-in based on thresholding and an artificially pre-

scribed maximum number of non-zeros in every row & column [133]. Block versions [135]

are sometimes used because of better robustness (with possible pivoting) and practical prop-

erties (cache-friendly algorithm, use of BLAS, etc.). Once an incomplete LU factorization

has been computed, it can be used as a preconditioner for a CG or GMRES algorithm for

instance.

Matrices arising from elliptic PDE discretization also typically have low-rank o↵-diagonal

blocks [17, 16, 39]. More precisely, the fill-in arising when factoring the matrix typically

has a small numerical rank with a weak dependence on N . This is closely related to the

existence of a smooth Green’s function for the underlying PDE and to the Fast Multipole

Method [12, 78, 65]. Matrices built using this property are broadly called Hierarchical (H)

matrices [83]. Many formats exist, depending on when and how o↵-diagonal blocks are

compressed into low-rank format. The Hierarchical O↵-Diagonal Low Rank (HODLR) [6]

format compresses all o↵-diagonal blocks. If the o↵-diagonal blocks are compressed using

a nested basis, we obtain Hierarchically Semi-Separable (HSS) matrices [37, 38, 40, 157].

Finally, the broader category of H2 matrices also uses nested basis but only compresses

well-separated (i.e., far-field) interactions ([85, 86, 160], [125] with LoRaSp and [144] with

the “Compress and Eliminate” solver). All of those representations lead to a data-sparse

representation of the matrix with tunable accuracy (by making the low-rank approximations

more or less accurate) and fast inverse computations. This can then be used to construct
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preconditioners. These constructions, while asymptotically e�cient, sometimes have fairly

large constants.

Attempts to improve the practical performance rely on exploiting sparsity as well as

the low-rank structure. Most approaches up to date have focused on incorporating fast

(i.e., H-) algebra into the classical Nested Dissection algorithm [77] in order to decrease

the cost of working with large fronts. Other works have taken the similar approach of

incorporating rank structured matrices into a multifrontal factorization in order to compress

the large dense frontal matrices. HSS is often used to compress the large frontal matrices

[156, 138, 154, 155, 73]. The last one was incorporated into the Strumpack package. [7] uses

Block Low-Rank approximation to compress the frontal matrices in the MUMPS solver [8].

Finally, [61] studies the use of H-matrices using HODLR in the PaStiX solver [90].

The Hierarchical Interpolative Factorization (HIF) [95] proposes a di↵erent approach.

Instead of storing the full dense fronts in some low-rank format, it uses low-rank approxima-

tions to directly sparsify (i.e., eliminate part of) the Nested Dissection separators without

introducing any fill-in. As a result, the algorithm never deals with large edges (in low-rank

format or not) but instead constantly reduces the size of all edges and separators. This is

the approach we take.

We finally mention some recent work by J. Xia & Z. Xin [159] and J. Feliu-Fabà et al.

[63] where, in both cases, a scale-then-compress approach is taken. Our algorithm shares

similarities with those, as we also scale the matrix block using the Cholesky factorization

of the pivot. As we will see, this significantly improves the preconditioner’s accuracy.

2.1.1 Contribution

Our approach is based on the idea of HIF described in [95]. However, there are several

di↵erences, improvements, and novel capabilities:

• Our algorithm is completely general and can be applied to any matrix, either SPD

(with strong stability guarantees), symmetric or unsymmetric (in which case, the

sparsity pattern is assumed to be symmetric or near-symmetric). The only required

input is the sparse matrix itself. If geometry information is available, it can be used

to improve the quality of the ordering and clustering.

• We incorporate an additional diagonal block scaling step in the algorithm, greatly

improving the accuracy of the preconditioner for only a small additional cost;
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• We use an orthogonal (instead of interpolative) transformation, improving stability

and guaranteeing that the preconditioner stays SPD when A is SPD;

• We test the algorithm on more and larger test problems.

In a nutshell, our algorithm is based on a couple of key ideas. First, we start with a nested

dissection (ND) ordering. Then following the idea introduced in [95], after each elimination

step, we sparsify the interfaces between just-eliminated interiors, e↵ectively reducing the

size of all ND separators. This is done using low-rank approximation, allowing to sparsify

the separators without introducing any fill-in. We then merge clusters and proceed to the

next level.

A natural consequence of the above algorithm is that, if the compression fails to reduce

the size of the separators, the algorithm reverts to a (slower, but still relatively e�cient)

Nested Dissection algorithm.

2.1.2 Contrast with H-matrix-based algorithms

We emphasize that the HIF approach [95] and ours are di↵erent from the classical way

of accelerating sparse direct solvers. Consider for instance the top separator of a Nested

Dissection elimination. At the end of the elimination, the corresponding (very large) block

in the matrix is typically dense. MUMPS [7] and PaStiX [61] for instance use fast H-algebra

(specifically block low-rank (BLR) matrices) to compress this block [7, 124]. This allows

for fast factorization, inversion, etc.

As indicated above, we take a di↵erent approach. Instead of storing large blocks (corre-

sponding to large separators) in low-rank format (typically using H-matrices), we eliminate

part of the separators right from the beginning , e↵ectively reducing their size. We do so

without introducing any fill-in but at the expense of an approximate factorization. As a

result, the top separator remains dense but is much smaller than at the beginning.

Both approaches use some sort of hierarchical clustering of the unknowns. The di↵erence

lies in the order of operations. In the first category (large blocks using fast H-algebra)

elimination is delayed until the end. The results are large and dense but hierarchically low-

rank fronts. In our approach (like in [95]), fronts are kept small throughout the factorization

by eliminating unknowns related to low-rank interactions as soon as possible.
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2.2 Sparsified Nested Dissection

This section describes the algorithm in detail. We call it spaND for Sparsified Nested

Dissection. We start by discussing sparse direct methods and Nested Dissection. Then,

building upon them, we introduce our algorithm and then detail all the various parts.

2.2.1 Sparse direct methods and Nested Dissection

Let us assume A is SPD (this will be relaxed later on). The first approach to solve (2.1)

consists of direct methods. Those compute an exact Cholesky factorization of A

A = LL>

where L 2 RN⇥N is lower triangular.

Since A is sparse, so is L. To understand how sparse L is, consider the following. Let

us perform a partial Cholesky factorization of A by eliminating the first row and column

—degree of freedom (dof). A can then be written as

A =

"
a11 A12

A21 A22

#

with a11 2 R, A22 2 RN�1⇥N�1, and with compatible sizes for the other blocks. With

l211 = a11 > 0 (because A is SPD), we have

"
l�1
11

�A21a
�1
11 I

#"
a11 A12

A21 A22

#"
l�1
11 �a�1

11 A12

I

#
=

"
I

A22 �A21a
�1
11 A12

#
. (2.2)

We say that the first dof has been eliminated. At this point, the algorithm recurses on

B22 = A22 � A21A
�1
11 A12, called the Schur complement or trailing matrix. Note that if A

is SPD, so is B22. However, notice that the sparsity pattern of B22 is not the same as A22

because of the �A21a
�1
11 A12 term. In general, it may contain more non-zero entries.

To understand this, let us define GA to be the graph of A 2 RN⇥N , GA = (V,E) with

V = {1, . . . , N} and E = {(i, j) | Aij 6= 0}. We see that, ignoring fortuitous cancellations,

B22,ij 6= 0 either if A22,ij 6= 0 or (A21a
�1
11 A12)ij 6= 0. The first condition corresponds

to original non-zero entries in A or existing edges in GA. The second condition can be

equivalently formulated as A21,i 6= 0 and A21,j 6= 0. In GA, this indicates that if vertex 1
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has an edge to 1+ i and 1+ j, then B22,ij 6= 0. Those additional non zero entries in B22 are

called fill-in. This argument can be repeated up to when every vertex has been eliminated.

At every step, eliminating a vertex v fills the trailing matrix with edges corresponding to a

clique between all of v’s non-eliminated neighbors. This argument can be generalized to a

group (or cluster) of dofs. Eliminating a set S of vertices creates fill-ins corresponding to a

clique involving all of S’s non-eliminated neighbors in A. (Note that this is formally only

an upper-bound.) Assuming S comes first in the matrix, one can write

"
L�1
11

�A21A
�1
11 I

#"
A11 A12

A21 A22

#"
L�1
11 �A�1

11 A12

I

#
=

"
I

A22 �A21A
�1
11 A12

#

which is very similar to Equation (2.2), with blocks instead of scalars for l11 and a11. We say

that vertices in S have been eliminated. Like before, we see that B22 := A22 � A21A
�1
11 A12

is, in general, denser than A22 because of the second term.

What this indicates is that not all elimination orders are equal. Indeed, one could

equivalently factor

PAP> = LL>. (2.3)

This merely corresponds to renumbering rows (equations) and columns (unknowns). In

(2.3), there are potentially many choices of P leading to di↵erent Schur complements,

trailing matrices, and eventually L’s, all with di↵erent sparsity patterns. Those choices are

called orderings, since they amount to reordering the unknowns, through the permutation

P .

Finding the P minimizing the amount of fill-in is known to be NP-complete in general

[161]. As such, many heuristics exist. One of the most common heuristics, in particular

when A comes from the discretization of a PDE, is the Nested-Dissection (ND) ordering

[71, 109, 74]. ND is a divide-and-conquer algorithm where the graph of A is recursively

divided into three sets of dofs: a separator s, a left interior l, and a right interior r. l and r

should be picked in such a way that they are disconnected in the graph of A. This implies

that the matrix can be written in an arrow-head fashion

A =

2

664

All Asl

Arr Asr

Asl Asr Ass

3

775
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(a) ` = 3 (b) ` = 2 (c) ` = 1 (d) ` = 0

Figure 2.1: Classical Nested Dissection ordering for L = 4 levels.

We then see that the elimination of l does not produce fill-in on r (and vice-versa). They

only produce fill-in on s, the separator. This also implies that they can be eliminated in

parallel. The algorithm is then recursively applied on L and R until interiors are small

enough to be factored directly using a dense direct method. Elimination then follows a

bottom-up approach, where interiors are eliminated before their parent separator.

For the remainder of this work, it will be convenient to consider a slightly more restrictive

framework in which interiors and separators form a binary tree of L levels. This means that

the recursive process described before stops after exactly L steps. Every level ` will have

exactly 2L�`�1 separators (note that some separators may be empty, and they may have

di↵erent sizes). We then denote the leaf level by ` = 0 and the top-level by ` = L � 1.

Figure 2.1 illustrates the separator construction processor for L = 4. We see how the

graph of A is recursively separated by separators (in black and grey). Figure 2.2 shows the

associated binary tree of separators and interiors. Elimination then proceeds level by level

from the bottom (` = 0) to the top (` = L � 1). At a given level `, we often refer to the

dofs to be eliminated as interiors.

We can also write the elimination in matrix form. Define A(0) as the entire matrix

and let A(`) (for ` > 0) be the Schur complement operator (trailing matrix) obtained by

eliminating levels 0, . . . , `� 1. The matrix obtained after eliminating the `� 1 level can be
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` = 3
` = 2
` = 1
` = 0

Figure 2.2: The elimination tree associated to the ND ordering on Figure 2.1 for L = 4
levels.

written in a block-arrowhead form

A(`) =

2

666664

A(`)
11 A(`)

1q
. . .

...

A(`)
mm A(`)

mq

A(`)
q1 . . . A(`)

qm A(`)
qq

3

777775

where m = 2L�`�1 and q = m + 1. Here, A(`)
qq refers to the matrix associated with all

separators at levels `+ 1, . . . , L� 1. The A(`)
ii (for i  m) are the matrices associated with

non-eliminated unknowns within the ith disconnected separators on the `th level. The Schur

complement can now be written as

A(`+1) = A(`)
qq �

mX

i=1

A(`)
qi

⇣
A(`)

ii

⌘�1
A(`)

iq .

This new matrix can then be interpreted as another block-arrowhead matrix associated

with level `+ 1 and so the elimination procedure can be repeated.

Figure 2.3 illustrates the elimination of a sparse matrix A using ND ordering with L = 3.

The matrix graph is shown on the left and the trailing matrix on the right. The trailing

matrix is shown in its natural, or topological, ordering. So it is not in arrowhead form. We

observe the phenomenon described earlier: when an interior is eliminated, in general, all

nodes at its boundaries are connected.

While limited, the fill-in is still significant. For instance, once all descendants of the top

separators have been eliminated, the top separator is typically entirely dense. For problems

arising from the discretization of PDE’s in 3D with O(N) = O
�
n3
�
degrees of freedom

(dofs), the top separator typically has size O
�
N2/3

�
= O

�
n2
�
. For instance, in a regular

n⇥n⇥n cube with N = n3 dofs and a 7-points stencil (or any other stencil with only local
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(d) ` = 1 eliminated, with only the top separator left

Figure 2.3: Elimination using ND ordering with L = 3 levels

connections), the top separator is a plane (see Figure 2.4) of size n⇥n = n2 = N2/3. Hence,

its factorization will cost O
�
N2/3⇥3

�
= O

�
N2

�
, leading to quadratic or near-quadratic

algorithms. While this is only formally valid on regular cubic-shaped graphs, the issue

extends beyond those problems[109]: the separators in 3D graphs are typically very large,

leading to large Schur complements and an expensive factorization, with complexity well

above O(N).

Our algorithm addresses this specific concern by continually decreasing the size of all

separators to keep fill-in to a minimum. It does so using low-rank approximations, and the

factorization is then only approximate. In most cases under consideration, the separator

size is typically decreased to O(n) = O
�
N1/3

�
so that its factorization costs O(N).

2.2.2 Sparsified Nested Dissection

We now explain an algorithm used to further decrease the amount of fill-in arising during

the factorization. Consider again the Cholesky factorization of A using a ND ordering, with

L = 3, and assume level ` = 0 has been eliminated.

Consider the example on Figure 2.5. Figure 2.5a shows the original matrix and graph.
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n

n

Figure 2.4: Classical ND in 3D with N = n3 nodes: the top separator is of size O
�
n2
�
.

Once the left and right clusters have been eliminated the top separator becomes completely
dense, making its elimination alone cost O

�
(n2)3

�
= O

�
N2

�
.

We then perform one level of ND elimination and obtain Figure 2.5b. Now consider the dofs

depicted in red on Figure 2.5c, and call those p. Their neighbors, n are depicted in green.

Notice how most of the connections from red to green are through fill-in. In particular, for

nodes in p at the top, most of those fill-ins are very long-range interactions, meaning their

neighbors were originally very distant in the graph of A.

Now consider the matrix Apn corresponding to edges from p to n. Since p has eight dofs,

Apn has eight rows. Also, since A is SPD, Anp = A>
pn, so considering Apn is enough in the

following analysis. Let �i be the singular values of Apn (1  i  8). �1/�8 are depicted on

Figure 2.5c. Notice that �i decays quickly with i. This observation is crucial. This implies

that Apn can be well-approximation by a low-rank matrix. Let

Apn = QcWcn +QfWfn (2.4)

whereQ =
h
Qc Qf

i
is orthogonal and kWfnk2  " where " is small, for instance 10�2kApnk2.

We call rank the number of columns of Qc (i.e., the "-rank of Apn). Given the fast decay

of �i, we can expect this approximation to be very accurate even for a small rank.

Now consider the trailing matrix at that stage, reordered so that p come first, followed

by n and where w denotes the remaining dofs. In future sections, App will be replaced by

the identity. But to keep the discussion short we don’t consider this here. The trailing

matrix is then 2

664

App Apn

Anp Ann Anw

Awn Aww

3

775 .



CHAPTER 2. SPARSIFIED NESTED DISSECTION 19

For convenience, let

Q>AppQ =

"
Bff Bfc

Bcf Bcc

#
=

"
Q>

f AppQf Q>

f AppQc

Q>
c AppQf Q>

c AppQc

#
.

Given (2.4), we have

2

664

Q>

I

I

3

775

2

664

App Apn

Anp Ann Anw

Awn Aww

3

775

2

664

Q

I

I

3

775 =

2

666664

Bff Bfc O(")

Bcf Bcc Wcn

O(") W>
nc Ann Anw

Awn Aww

3

777775

⇡

2

666664

Bff Bfc

Bcf Bcc Wcn

W>
nc Ann Anw

Awn Aww

3

777775

So we see that after transformation Q, the dofs f (“fine”, following AMG’s terminology

[143]) are approximately disconnected from n (and w, as before). The dofs c (“coarse”) are

connected to the original neighbors of p. In addition, this transformation did not introduce

any fill-in on n or w. So dofs f can be immediately eliminated, and the trailing matrix

becomes 2

664

Ccc Wcn

W>
nc Ann Anw

Awn Aww

3

775

with Ccc = Bcc � BcfB
�1
ff Bfc. This result is shown in Figure 2.5d. We see that p shrunk

in size, with only one dof left. Similarly, the trailing matrix lost seven rows and columns,

without creating any new fill-in (there is no fill-in between the left and right separators on

Figure 2.5d).

This idea is the key behind the spaND, explained in detail in the next section. This

sparsification procedure is applied at each level of the ND elimination, after interior elim-

ination. As hinted on Figure 2.5, spaND requires identifying clusters (p, on Figure 2.5)

originally connected to their neighbors through as long-range connections as possible. We

call those clusters interfaces, and the algorithm simply sparsified all remaining interfaces at

every level. Algorithm 2.1 presents a high-level version of the algorithm.
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(b) After interiors at ` = 0 are eliminated
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(d) After sparsification. p decreased in size while cre-
ating no new fill-ins between its neighbors n.

Figure 2.5: Low-rank structure arising from elimination using ND ordering
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Algorithm 2.1 High-level description of the spaND algorithm
Require: Sparse matrix A, Maximum level L

Compute a ND ordering for A, infer interiors, separators and interfaces (see Section 2.2.3)
for all ` = 0, . . . , L� 1 do

for all I interior do
Eliminate I (see Section 2.2.4)

end for
for all B interface between interiors do

Sparsify B (see Section 2.2.5 and Section 2.2.6)
end for

end for

The result is that separators sizes are greatly reduced, at the cost of the controllable

approximation error directly related to ". As " ! 0, the algorithm simply reverts to a

classical ND elimination. Typically, in 2D, separator sizes decay so that the algorithm

complexity becomes O(N) and, in 3D, O(N logN).

The subsequent sections explain in detail the ordering & clustering (i.e., how we define

the “interfaces”), the elimination and sparsification.

2.2.3 Ordering and Clustering

In addition to ordering, an appropriate clustering of the dofs has to be performed to define

the various interfaces between interiors. That is, a simple ND ordering, by itself, does not

give any indication about what the interfaces between di↵erent interiors are. To see this,

consider Figure 2.1 (bottom row). This figure illustrates a classical ND ordering process.

At every step, interiors are further separated by computing vertex separators. However,

there is no clear way to define interfaces between interiors (like the red box on Figure 2.5c

for instance).

In principle, one could cluster separators individually, for instance using K-way or any

other clustering algorithm. However, in this work, we seek a clustering algorithm that

clusters separators in such a way that every cluster is adjacent to a given pair of “left” and

“right” interiors. This will let us extract low-rank structure in the matrix, using the fact

that most of the nodes in every cluster will be connected to outside nodes mostly through

fill-ins.

To do so, we have to keep track of the boundary of each interior during the ordering

process. We do so by modifying the usual ND algorithm. In the classical algorithm, a set



CHAPTER 2. SPARSIFIED NESTED DISSECTION 22

I

B

(a) An interior and its boundary before the
modified ND step.

L \ I

R \ I

M \ I

R \ B

L \ B

(b) The resulting left and right interiors
and their boundaries.

Figure 2.6: The clustering & ordering building block. On the left, an initial interior I and
its boundary B. We then compute a vertex separator separating I [B into left L, right R,
and separator M. On the right, the resulting separated interiors and their boundaries, as
well as the actual ND separator.

of vertices is separated by a vertex-separator, and the algorithm then recurses on the “left”

and “right” clusters (interiors). We modify this by separating an interior and its boundary

using vertex separators. This let us keep track of the interfaces. Figure 2.6 shows the

high-level idea. For every interior I we keep track of its boundary B and we then separate

their union I [ B.
In practice, each node in the graph keeps track of its “left” and “right” neighboring

separators, in addition to keeping track of the separator it belongs to. We encode this by

associating to each vertex v a 3-tuple (S,L,R). S is the usual ND separator (`, k) where

` is its level (0  ` < L, with L � 1 the root and 0 the leaves) and k its separator (0 
k < 2L�`�1). L and R are the ND separators of v’s left and right neighbors, respectively.

Algorithm 2.2 formalizes this idea. We call this algorithm Modified Nested Dissection

(MND). Notice how the only building block is a vertex-separator routine, as available in

Metis [100].

Algorithm 2.2 returns C that gives for each vertex v in the graph its ND separator,

C[v]S , as well as a tuple (C[v]L, C[v]R) indicating its left and right neighboring interiors.

We then cluster together vertices v with the same C[v]. This algorithm is naturally recursive

and defines, for each separator, a tree of clusters.

Figure 2.7 illustrates the e↵ect of Algorithm 2.2 On the top row, we illustrate the

separators at every step (`) of the algorithm. The important distinction with Figure 2.1 is

that the computed vertex-separators overlap with the boundaries to keep track of interfaces

and that each separator is further divided into clusters. In the middle row, we illustrate the

actual clusters at each level and how the ND separators are broken into pieces. Separators
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Algorithm 2.2 Ordering and clustering algorithm. The algorithm is similar to a classical
ND algorithm, except that it keeps track of the interfaces between interiors/separators, and
recursively dissects interiors and their interfaces. ND separators are encoded as (`, k) where
` is the level and 1  k  2`�1.
Require: V , vertices, E, edges, L levels

% Initialize the top separator (everyone), left and right neighbors (undefined)
C[v] = (S : (L� 1, 0), L : none, R : none) for all v 2 V
for all ` = L� 1, . . . , 1 do

for all k = 1, . . . , 2L�`�1 do
% Find interior to separate I and its boundary B
I = {v 2 V : C[v]S = (`, k)}
B = {v 2 V : C[v]L = (`, k) or C[v]R = (`, k)}
% Find vertex separator M, left and right interiors L and R
(L,M,R) = vertex-separator(I [ B)
% Update separator, left and right interiors
C[v]S = (`, k) for all v 2M\B
C[v]S = (`� 1, 2k � 1) for all v 2 L\B
C[v]S = (`� 1, 2k) for all v 2 R\B
% Update neighbors of separator
for all v 2M \ I do

C[v]L = (`� 1, 2k � 1)
C[v]R = (`� 1, 2k)

end for
% Update neighbors of left and right boundaries
for all v 2 L \ B do

if C[v]L = (`, k) then
C[v]L = (`� 1, 2k � 1)

else
C[v]R = (`� 1, 2k � 1)

end if
end for
for all v 2 R \ B do

if C[v]L = (`, k) then
C[v]L = (`� 1, 2k)

else
C[v]R = (`� 1, 2k)

end if
end for

end for
end for
return C
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(a) ` = 3 (b) ` = 2 (c) ` = 1 (d) ` = 0

(e) ` = 3 (f) ` = 2 (g) ` = 1 (h) ` = 0

(i) ` = 3 separator clustering
hierarchy

(j) ` = 2 separators clustering
hierarchy

(k) ` = 1 separators clus-
tering hierarchy

Figure 2.7: A modified ND ordering & clustering (Algorithm 2.2) for L = 4. The top
row indicates the separators computed at each step by separating interiors & boundaries.
The middle row illustrates the clustering of dofs in each separator creating the interfaces
between interiors. The bottom row shows the clusters hierarchy within each ND separator.

at each level are depicted in a di↵erent color. Each separator is associated with a hierarchy

of clusters. The bottom row shows such a hierarchy within each separator and how those

have to be merged when going from a lower to a higher level.

In practice (see Section 2.4), we implement this algorithm in two ways. If geometry

information is available, the vertex-separator subroutine of Algorithm 2.2 is implemented

using a recursive coordinate bisection. The subgraph is partitioned into two equal parts

along the dimension with the largest span, and the nodes in the first part adjacent to the

second form the middle separator. If no geometry information is available, we use the

nodeND routine of Metis [100].
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Figure 2.8: Before and after the elimination of the separator s using block Cholesky. Elim-
inating s disconnects it from the rest, but requires updating the Ann edges, connecting all
neighbors n of s

2.2.4 Elimination of separators

Now that the matrix has been ordered and that dofs have been grouped into clusters defining

various interfaces, the next step is to eliminate the interiors or separators at a given level `

of the ND tree, as in a usual direct solver (see Algorithm 2.1). This section describes this

elimination step.

Consider A into the “block-arrowhead” form following the ND ordering

A =

2

664

Ass Asn

Aww Awn

Ans Anw Ann

3

775

We indicate the separator or interior of interest by s, its neighbors by n, and all disconnected

nodes by w.

Assume Ass is invertible, and let LsU>
s = Ass be some factorization of Ass where Ls and

Us are easy to invert (like triangular, permutation, orthogonal, or any product of those).

When A is SPD, we use Cholesky, i.e., Ass = L0
sL

0
>
s , so Ls = L0

s and Us = L
0
>
s . In general,

one can use row pivoted LU or full pivoted LU, i.e., Ass = P 0
sL

0
sU

0
sQ

0
s and Ls = P 0

sL
0
s,

Us = U 0
sQ

0
s.

Then, define

Es =

2

664

L�1
s

I

�AnsA�1
ss I

3

775 , Fs =

2

664

U�1
s �A�1

ss Asn

I

I

3

775
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Then, applying Es on the left and Fs on the right of A leads to

EsAFs =

2

664

I

Aww Awn

Anw Ann �AnsA�1
ss Asn

3

775 =

2

664

I

Aww Awn

Anw Bnn

3

775

Notice that EsAFs does not depend on the choice of Ls and Us, only on A�1
ss . This may

introduce (potentially many) new ni–nj edges not present before, a fill-in. However, there

was no modification involving w. This is key in the ND ordering: there are no edges s–w,

so no fill-in outside the neighbors.

Figure 2.8 shows the elimination process from the matrix’ graph perspective. We see

that s is now isolated from the rest of the graph. We say that s has been eliminated.

Furthermore, the e↵ect on the rest of the graph was to update the self-edge n–n, Ann.

Separated nodes (w) remain untouched.

2.2.5 Block scaling of the interfaces

Once that the separators or interiors at a given level have been eliminated, the algorithm

goes through each interface and sparsifies it. However, a critical step before this is the

proper scaling of each of those clusters. The goal is to scale (what is left of) A such

that each diagonal block corresponding to a given interface is the identity. This provides

theoretical guarantees in the SPD case (Section 2.3) and significantly improves the accuracy

of the preconditioner (Section 2.4).

Consider the matrix

A =

"
App Apn

Anp Ann

#

Like in Section 2.2.4, let App = LpU>
p . Notice in this case that it may be desirable to

balance Lp and Up, so that kL�1
p k ⇡ kU�1

p k. This is done to keep Anp and Apn of similar

magnitudes. When using Cholesky, this is trivially the case since Up = Lp. We define the

block-scaling operation over p as

Sp =

"
L�1
p

I

#
, Tp =

"
U�1
p

I

#
,
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p n
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App

Ann

(a) Before scaling p

p n
Cpn, Cnp
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Ann

(b) After scaling p

Figure 2.9: Scaling of an interface p

The result is

SpATp =

"
I L�1

p Apn

AnpU�1
p Ann

#
=

"
I Cpn

Cnp Ann

#

also depicted in Figure 2.9.

We see that the scaling of p requires modifying the edges involving p itself, but it has

no other e↵ect than that.

2.2.6 Interface sparsification using low-rank approximations

Now that interiors have been eliminated and each interface scaled, the final step is the

sparsification. At this stage, the algorithm will go through each interface, p, and sparsify

it, using low-rank approximations. Consider again

A =

"
App Apn

Anp Ann

#

Using orthogonal transformations

Let us assume App = I. This is not a loss of generality, as it can always be obtained by

scaling p, as described in the previous section. Let us also assume that
h
Apn A>

np

i
(if

A = A>, the second term is not needed) can be well approximated by a low-rank matrix,

i.e.,

h
Apn A>

np

i
= Qpc

h
Wcn W>

nc

i
+Qpf

h
Wfn W>

nf

i
,

���
h
Wfn W>

nf

i���
2
 "

where Qpc is a thin orthogonal matrix and Qpf its complement. This can be computed

using a rank-revealing QR (RRQR) or a singular value decomposition (SVD) [75, 36, 80].
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(a) Before sparsification of p
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Figure 2.10: Sparsification of p using orthogonal transformation.

We use the letters c to denote the “coarse” (also known as “skeleton” or “relevant”, [95])

dofs, and f the “fine” (“redundant” or “irrelevant”) dofs. Let Qpp be a square orthogonal

matrix built as Qpp =
h
Qpf Qpc

i
. This implies

Q>

pcApn = Wcn, AnpQpc = Wnc, Q>

pfApn = Wfn = O(") , AnpQpf = Wnf = O(") .

Then, define

Qp =

"
Qpp

I

#
(2.5)

We see that

Q>

p AQp =

2

664

I Wfn

I Wcn

Wnf Wnc Ann

3

775 =

2

664

I O(")

I Wcn

O(") Wnc Ann

3

775

Figure 2.10 shows the e↵ect of the sparsification on the matrix graph. This is the key

picture. After the orthogonal transformation, f only has very “weak” connections to n. If

we ignore the O(") term, this is the same as dropping the n–f edge. This e↵ectively means

f has been eliminated.

However, note that this did not introduce any new edge with any of the neighbors of

p. This is the key di↵erence with a “regular” elimination as described previously: we can

eliminate part of a cluster, here f , without forming new edges between its neighbors. The

n–n edge is una↵ected by this operation (i.e., there is no fill-in). A regular elimination, on

the other hand, would have changed the edges n–n.
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Why not having di↵erent Qpp for the left and the right? In the previous paragraph,

Qpp was computed as a basis for
h
Apn A>

np

i
. One can naturally ask why we did not compute

a basis Ql
pp for Apn and a basis Qr

pp for A>
np, when A is general. But notice that in this case

Ql>
p AQr

p =

2

664

Ql>
pfQ

r
pf Ql>

pfQ
r
pc O(")

Ql>
pcQ

r
pf Ql>

pcQ
r
pc Wcn

O(") Wnc Ann

3

775

where there is no guarantee that Ql>
pfQ

r
pf is invertible. In particular, if Ql

pf ? Qr
pf , then

Ql>
pfQ

r
pf = 0, and the algorithm would break down, as the fine dofs cannot be eliminated.

Which interfaces should be sparsified? After elimination, the remaining dofs are all

considered interfaces. However, in general, not all interfaces should be sparsified. Only

interfaces with (relatively to their size) few original connections (i.e. connection existing in

A) should be sparsified. Using the framework of Algorithm 2.2, this means only interfaces

for which their left and right separators are eliminated should be sparsified.

Variant using Interpolative Transformations

The previous section details the sparsification process using orthogonal transformations.

However, this can also be done using other transformations. In this section, we explain one

variant using interpolative factorization, which was the original idea in [95].

Assume we can partition p = c [ f (so, in this case, c and f are subsets of p) such that

(if A = A>, the bottom row is ignored)

"
Anf

A>

fn

#
=

"
Anc

A>
cn

#
Tcf +O(") .

This is often called “interpolative decomposition”. It can be computed for instance using

a rank-revealing QR (RRQR) factorization [45] (note that the RRQR is computed over

Anp instead of Apn in Section 2.2.6): computing a RRQR over

"
Anp

A>
pn

#
leads to (with P the

permutation, and R22 = O("))

"
Anc Anf

A>
cn A>

fn

#
=

"
Anp

A>
pn

#
P =

h
Q1 Q2

i "R11 R12

R22

#
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)
"
Anf

A>

fn

#
= Q1R11| {z }

2

64
Anc

A>
cn

3

75

R�1
11 R12| {z }
Tcf

+Q2R22| {z }
=O(")

Note that this factorization can also be computed using randomized methods [107]. This

technique is referred to as “interpolative” because it is exact on Anc and Acn: only Anf and

Afn are approximated and Tcf acts as an interpolation operator (i.e., as a set of Lagrange

basis functions).

Now, consider

Tp =

2

664

I

�Tcf I

I

3

775

Notice how Tp is a lower triangular matrix, while Qp in Equation (2.5) was orthogonal.

Both can be e�ciently inverted; however, working with orthogonal matrices brings stability

guarantees (see Section 2.3). Then,

T>

p ATp =

2

664

Cff Cfc O(")

Ccf Acc Acn

O(") Anc Ann

3

775

with

Cff = Aff �AfcTcf � T>

cfAcf + T>

cfAccTcf , Ccf = Acf �AccTcf , Cfc = Afc � T>

cfAcc

Figure 2.11b shows the matrix’ graph after the sparsification of p using interpolative

factorization (and without prior scaling). Notice how f and c are still connected; however,

f is (almost) disconnected from the rest of the matrix. We see that by ignoring the O(")

term, we can eliminate f immediately (see Section 2.2.4). The result is (note the updated

c–c edge) shown in Figure 2.11c.

The final result is the same as using orthogonal transformation. The di↵erences are that

• App is not required to be identity;

• Acn is simply a subset of Apn.
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p n
Apn,Anp

I

Ann

(a) Before sparsification of p

f c n
Cfc,Ccf Acn,Anc

Cff

Acc Ann

O(")

(b) After sparsification of p

f c n
Acn,Anc

I

Ccc Ann

(c) After elimination of f

Figure 2.11: Sparsification of p using interpolative factorization

However, as we will see later on, there is a significant accuracy loss when using this tech-

nique without block scaling as opposed to orthogonal transformations with block scaling.

Furthermore, it does not guarantee that the approximation stays SPD.

2.2.7 Clusters merge

Finally, once we have eliminated all separators at a given level, we need to merge the

interfaces of every remaining ND separator. Consider for instance Figure 2.7. After having

eliminated the leaf (level ` = 0) and the level ` = 1 separators, we need to merge the

clusters in each separator. This is done following the cluster trees. Merging children clusters

p1, . . . , pk into a parent cluster p simply means concatenating their dofs:

p =
h
p1 p2 . . . pk

i
.

Then, all block rows and columns corresponding to p1, . . . , pk get concatenated into p.
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2.2.8 Sparsified Nested Dissection

Now that we have introduced all the required building blocks (block elimination, scaling,

and sparsification), we can present the complete algorithm. Given a matrix A, appropriately

ordered and clustered, the algorithm simply consists of applying a sequence of eliminations

Es and Fs (Section 2.2.4), scalings Sp and Rp (Section 2.2.5) and sparsification Qp (Sec-

tion 2.2.6) (plus potentially some re-orderings and permutations to take care of the fine

nodes f and the merge), at each level `, e↵ectively reducing A to (approximately) I:

MlAMr ⇡ I with Ml =
L�1Y

`=0

0

@
Y

p2C`

Q>

p

Y

p2C`

Sp

Y

s2S`

Es

1

A , Mr =
0Y

`=L�1

0

@
Y

s2S`

Fs

Y

p2C`

Tp

Y

p2C`

Qp

1

A

In this expression, S` is a set containing all the ND separators at level ` and C` contains all

the clusters (interfaces) in the graph right after level ` elimination. Since Ml and Mr are

given as a product of elementary transformations, they can easily be inverted. Algorithm 2.3

presents the algorithm.

We illustrate the e↵ect of all the Es, Fs, Sp, Tp, and Q>
p in A (i.e., the trailing matrix)

in Figure 2.12. The two top rows show the actual trailing matrix, while the two bottom

rows show the evolution of the matrix graph’s clusters as the elimination and sparsification

proceeds.

2.3 Theoretical results

We here discuss a couple of facts related to the above factorizations.

2.3.1 Sparsification and error in the Schur complement

Consider a framework where

A =

"
App Apn

Anp Ann

#
.

Without loss of generality, we do not include the w–w and w–n blocks, as they are completely

disconnected from p and una↵ected by the sparsification. Then, consider a general low-rank

approximation h
Apn A>

np

i
= X1

h
Y1pn Y >

1np

i
+X2

h
Y2pn Y >

2np

i
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Algorithm 2.3 The spaND algorithm (OrthS).

Require: A square; L > 0; "
Ml = [],Mr = [] (empty list)
Compute a L-levels modified ND ordering of |A|+ |A|> using Algorithm 2.2.
Infer clusters hierarchy in each ND separator.
for all ` = 0, . . . , L� 1 do

for all s separator at level ` do . Eliminate separators at level `
Eliminate s, get Es and Fs (Section 2.2.4)
Append Es to Ml and Fs to Mr

end for
for all p interfaces at level ` do . Scale interface

Scale p, get Sp and Ts (Section 2.2.5)
Append Sp to Ml and Tp to Mr

end for
for all p interface at level ` between eliminated interiors do . Sparsify interfaces

Sparsify p with accuracy ", get Qp (Section 2.2.6)
Append Qp to Ml and Mr

end for
for all s separator at level ` do . Merge clusters

Merge interfaces of s one level following clusters hierarchy (Section 2.2.7)
end for

end for
return Ml, Mr (such that MlAMr ⇡ I)
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(a) A (b) After E1 (c) After Q>
1 S1. Grey = O(").

(d) After reordering, bringing
f in front.

(e) After merge & E2 (f) After Q>
2 S2. Grey = O(")

(g) A, original
graph

(h) After E>
1 (i) After S>

1 Q1 (j) After merge

(k) After E>
2 (l) After S>

2 Q2 (m) After merge (n) After E>
3

Figure 2.12: Illustration of the spaND algorithm, where for simplicity all interfaces are
sparsified at each level. Given A, create a ND tree of depth 4 and cluster A accordingly,
as shown in Figure 2.12g. This cartoon shows clusters of vertices of A, where the edges
(not shown) should be thought of as connecting close neighbors (like on a regular 2D grid).
Denote by E` and F`, S` and T` and Q` all eliminations, scalings and sparsifications at
level `. Then, we have E4E3(Q>

2 S2E2)(Q>
1 S1E1)A(F1T1Q1)(F2T2Q2)F3F4 ⇡ I. The top

rows show the evolution of the trailing matrix; the bottom rows show the evolution of the
matrix graph after eliminations, sparsifications, and merges. We represent the sparsification
process by shrinking the size of the clusters.
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where
���
h
Y2pn Y >

2np

i���  ". Using X =
h
X1 X2

i
as a change of variable, A becomes

"
X�1

I

#"
App Apn

Anp Ann

#"
X�>

I

#
=

2

664

B11 B12 Y1pn

B21 B22 Y2pn

Y1np Y2np Ann

3

775

The sparsification process then assumes Y2 = 0 and eliminates the 2–2 block. The true

n–n Schur complement is

S = Ann � Y2npB
�1
22 Y2pn

while the approximate one, ignoring Y2pn and Y2np, is simply Ann. The error is then

Enn = Y2npB
�1
22 Y2pn.

We can now consider the di↵erent variants proposed in Section 2.2.6:

• (In) spaND using interpolative factorization and no diagonal block scaling. This gives

B22 = Cff , so that

kEnnk2  kY2npk2kY2pnk2kB�1
22 k2 = O

�
"2
�
kC�1

ff k.

• (InS) spaND using interpolative factorization and diagonal block scaling. This leads

to

kEnnk2  kY2npk2kY2pnk2kB�1
22 k2 = O

�
"2
�
kC�1

ff k.

However, since Ass = I, Cff = I + T>

cfTcf , we can expect, if Tcf is small (which

happens if the right algorithm is employed, see [112]), kC�1
ff k to be much closer to 1.

• (OrthS) spaND using orthogonal factorization and diagonal block scaling. In this

case, we simply have B22 = I and so,

kEnnk2  kY2npk2kY2pnk2 = O
�
"2
�
.

Table 2.1 summarizes the results. We notice that those three variants have roughly the

same cost since they require a RRQR over Apn or Anp, and their cost is proportional to

O(|p||n||c|) with |c| the resulting rank [75, Algorithm 5.4.1]
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Version Error on n–n Cost
In O

�
"2
�
kC�1

ff k2 O(|p||n||c|) Cff arbitrary

InS O
�
"2
�
kC�1

ff k2 O(|p||n||c|) Cff = I + T>

cfTcf

OrthS O
�
"2
�

O(|p||n||c|)

Table 2.1: Error for various approximations. The left column indicates the sparsification
variant:In means interpolative and no scaling; InS means interpolative and scaling; OrthS
means orthogonal and scaling.

The key is that the interpolative error bound (without and to some extent with scaling)

includes the potentially large kC�1
ff k2 term, which is not present with the OrthS version.

This indicates that we can expect the versions with diagonal scaling to have smaller errors

Enn. This will be verified in Section 2.4.

2.3.2 Stability of the block scaling & orthogonal transformations variant

In addition to a smaller n–n error as explained previously, the OrthS version provides

stability guarantees when A is SPD.

Theorem 2.1. Let

A =

"
I Apn

A>
pn Ann

#

be a SPD matrix. For any low-rank approximation

Apn = QpfWfn +QpcWcn

where Qp =
h
Qpf Qpc

i
is a square orthogonal matrix,

Bp =

"
I Wcn

W>
cn Ann

#

is SPD.

Proof. The n� n Schur Complement of Bp (when eliminating c) is

SB = Ann �W>

cnWcn.
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On the other hand, the n� n Schur Complement of A (when eliminating p) is

SA = Ann �A>

npApn = Ann �W>

cnWcn �W>

fnWfn

which implies

SB = SA +W>

fnWfn.

Since A is SPD, so is SA, and since W>

fcWfc ⌫ 0, we find that SB is SPD. Since the c � c

block of Bp is identity, we conclude that Bp is SPD.

Corollary 2.1. For any SPD matrix and " � 0, the sparsified matrices of the spaND algo-

rithm using block diagonal scaling and orthogonal low-rank approximations (OrthS) remain

SPD. In other words, the algorithm never breaks down.

Note that the above corollary does not depend on the quality of the low-rank approxi-

mation, i.e., it works even for ✏ = 0. It merely relies on the fact that the truncated error

(QpfWfn) is orthogonal to what is retained (QpcWcn) and that the scheme is using a weak

admissibility criterion (all edges of p are compressed). Finally, note that the above proof

also shows that

SB = SA +O
�
"2
�
, SB ⌫ SA.

This is a classical result in the case of low-rank approximation using weak admissibility (see

[158, 159] for instance).

2.3.3 Complexity analysis

We discuss the complexity of spaND and contrast it with the usual ND algorithm. In the

following, let � = L� `� 1, 0  � < L be the depth of the separator in the ND tree, so the

top separator has � = 0 while the leaves have � = L� 1.

Classical ND Nested dissection leads to a binary tree decomposition of the graph of A

(although n-ary trees are possible). In the literature, the nested dissection tree is often

defined as a tree of separators. Here for convenience, we take a slightly di↵erent viewpoint

where each node is a subgraph of G. Both viewpoints are equivalent. We start with the

root node that corresponds to the full graph G of size N . We define the children nodes as

the subgraphs that are disconnected by the separator. This process is applied recursively

to define the entire tree.
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In our complexity analysis, we are going to assume that all the graphs for sparse matrices

satisfy the following nested dissection property. We assume that leaf nodes contain at most

N0 nodes, where N0 2 O(1). Consider a node i in the tree, of size ni. Consider the set

Di of all nodes j such that they are descendant of i and they contain at least ni/2 nodes.

We assume that |Di| 2 O(1), that is the size of this set is bounded for all i and N . This

property is satisfied for �-balanced trees in which all children subgraphs have size �ni, for

some 0 < � < 1 independent of i and N . In that case, we have |Di|  1 + log 2/ log ��1.

We assume that all separators are minimal in the sense that each node in a separator

is connected to the two children subgraphs in the nested dissection partitioning (otherwise

this node can be moved to one of the subgraphs).

Finally, we assume that a subgraph of size ni is connected to at most O(n2/3
i ) nodes in

G.

As far as the authors know, all matrices that arise in the discretization of partial di↵er-

ential equations in 3D using a local stencil satisfy this property.

Consider now a node i of size 2��N  ni < 2��+1N (see Figure 2.4). The associated

separator has size at most

c� 2 O
⇣
2�2�/3N2/3

⌘

Further, the fill-in results in at most O
�
2�2�/3N2/3

�
non-zero entries in each row. The cost

of eliminating a separator in that size range is bounded by

e� 2 O
✓⇣

2�2�/3N2/3
⌘3◆

= O
⇣
2�2�N2

⌘

From our assumption, the number of clusters of size 2��N  ni < 2��+1N is bounded by

2�. Hence, the overall factorization cost is bounded by

tND,fact 2 O
 

L�1X

�=0

2�e�

!
= O

 
L�1X

�=0

2��N2

!
= O

�
N2

�
, L 2 ⇥(log(N/N0))

We recover the usual computational cost of nested dissection for 3D meshes. Most of the

computational expense is at the top of the nested dissection tree, with the final separator

of size N2/3.

The complexity of applying the factorization can be derived similarly. Since for each

cluster of size ni, its separator has O
�
2�2�/3N2/3

�
fill-in entries in its rows, the related solve
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cost is O
�
2�4�/3N4/3

�
and the cost of one solve is

tND,apply 2 O
 

L�1X

�=0

2��/3N4/3

!
= O

⇣
N4/3

⌘

spaND On the other hand, assume that the sparsification can decrease each separator

size before elimination from c� to

s� 2 O
⇣
2��/3N1/3

⌘

This means that the rank scales roughly like the diameter of the separators. This is also the

rank of the o↵-diagonal blocks for separators in the original matrix A. The assumption in

some sense is that the rank of far-away fill-ins is O(1). This is comparable with complexity

assumptions in the fast multipole method for example.

We now discuss a few additional assumptions regarding the construction of the interfaces

to guarantee the final O(N logN) cost. Recall that interfaces are used for sparsification

and correspond to a multilevel partitioning of the separators. We will say that two nodes

(i, j) at the same level in the nested dissection tree are neighbors if there is a node in G

that belongs to a separator at this level or above, and that is connected to i and j, in the

graph G. We will assume that each node has only O(1) neighbors. Under this assumption,

each interface is connected to O(1) interfaces at the same level.

Considering the computational cost, for all nodes of size 2��N  ni < 2��+1N , the cost

can be divided into:

• eliminating separators. With the same reasoning as previously, and since an interface

is connected to O(1) interfaces, the cost is bounded by

O
⇣
(2��/3N1/3)3

⌘
= O

⇣
2��N

⌘

• scaling and sparsifying the remaining interfaces. By construction, the size of each

interface is in O
�
2��/3N1/3

�
. Since sparsification has cost O

�
m2n

�
for a matrix block

of size m⇥ n, the cost of sparsifying one interface is bounded similarly by O
�
2��N

�
.
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Hence, under our assumptions, the overall factorization cost for spaND is

tspaND,fact 2 O
 

L�1X

�=0

2� 2��N

!
= O(N logN)

The complexity of applying the factorization can be derived like previously. A direct cal-

culation leads to

tspaND,apply 2 O
 

L�1X

�=0

2�
⇣
2��/3N1/3

⌘2
!

= O
 

L�1X

�=1

2�/3N2/3

!
= O(N)

Finally, notice that in both cases the memory complexity scales like the factorization

application. Section 2.4.2 presents some experimental results regarding separator sizes as a

function of N .

2.3.4 SPD, symmetric and unsymmetric cases

We finish with a discussion regarding the SPD case, the symmetric case (i.e., symmetric

but not SPD), and the general case (neither SPD nor symmetric). We only consider spaND

using orthogonal transformations.

As indicated in the previous section, if A is SPD, the trailing matrix provably remains

SPD, and the algorithm never breaks down. In the general case, the trailing matrix is

unsymmetric from the start. In addition, the block elimination and block scaling may both

break down, since there is no guarantee that the pivot is invertible. Pivoting techniques

could alleviate this issue but are outside the scope of this work.

Symmetric matrices pose a specific issue. Consider A, A = A>, and assume we are about

to sparsify an interface p. Since the original matrix is symmetric, we wish for the trailing

matrix to remain symmetric during the algorithm (if not, then we can simply consider the

general algorithm). Prior to scaling, the trailing matrix can be written as (with A>
np = Apn)

"
App Apn

Anp Ann

#

Since A is not SPD, there are no guarantees that App is invertible, but let us assume it is.

In general, App can be factored as App = LpSpL>
p where Sp is a diagonal sign matrix (with

+1 or �1 entries). This can be achieved using the eigenvalue decomposition or an LDLT
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factorization for instance. Given this, we can then scale App so that

"
L�1
p

I

#"
App Apn

Anp Ann

#"
L�>
p

I

#
=

"
Sp L�1

p Apn

AnpL�>
p Ann

#

Notice that it is not possible to scale A so that both the following are true:

• App becomes the identity

• The trailing matrix remains symmetric.

Hence, App has to become Sp. We then sparsify L�1
p Apn, obtaining the change of basis Qpp

so that "
Q>

pp

I

#"
Sp Bpn

Bnp Ann

#"
Qpp

I

#
=

"
Q>

ppSpQpp Wpn

Wnp Ann

#

However, notice how Q>
ppSpQpp 6= I. In particular, there are no guarantees that the f–f

block of Q>
ppSpQpp is invertible, unlike in the SPD or general case (this is a similar issue

as in Section 2.2.6). We see how this adds another challenge, on top of the already lack

of guarantees that the pivots are even invertible in the first place. As such, symmetric

matrices are usually treated as unsymmetric ones.

2.4 Numerical Experiments (SPD)

This section presents applications of the algorithm on various problems. We begin by

considering only SPD cases.

We use the following notation throughout this section:

• tfact is the factorization time (in seconds), not including partitioning;

• tpart is the partitioning time (in seconds);

• tsolve is the total time (in seconds) required for CG to reach a relative residual kAx�
bk2/kbk2 of 10�12. It is the total time to reach convergence. While this is quite a

small value, being able to reach those tolerances is a good indication of the numerical

stability of the algorithm (i.e., that the preconditioner does not prevent CG from

converging to a small tolerance);

• nCG is the associated number of CG steps;
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• size top is the size of the top separator right before elimination;

• memfact is the number of non-zero entries in the factorization;

On top of this, at some point we compare spaND to classical “exact” ND (using spaND

with no compression & scaling; “Direct”) and to a classical ILU(0) [134] (“ILU(0)”).

All tests were run on a machine with 300 GB of RAM and a Intel(R) Xeon(R) Gold

5118 CPU at 2.30GHz. The algorithm is sequential and was written in C++. We use GCC

8.1.0 and Intel(R) MKL 2019 for Linux for the BLAS & LAPACK operations. When no

geometry information is available, we use Metis 5.1 [100] for the vertex-separator routine.

We use Ifpack2 [126] for ILU(0). Low-rank approximations are performed using LAPACK’s

geqp3 [9]. The truncation uses a simple rule, truncating based on the absolute value of the

diagonal entries of the R factor. This means that, given R, we select the first r rows, where
|Rii|

|R11|
� " for 1  i  r.

2.4.1 Impact of Diagonal Scaling & Orthogonal Transformations

In this first set of experiments we compare, empirically, the three variants of the algorithm:

• (In) spaND using interpolative factorization and no diagonal block scaling;

• (InS) spaND using interpolative factorization and diagonal block scaling;

• (OrthS) spaND using orthogonal factorization and diagonal block scaling.

This should be contrasted with prior work [95] where the algorithm was using the inter-

polative only variant (with no scaling).

High contrast 2D Laplacians

We first consider 2D elliptic equations

r(a(x) ·ru(x)) = f 8x 2 ⌦ = [0, 1]2, u|@⌦ = 0 (2.6)

where a(x) is a quantized high contrast field with highs of ⇢ and lows of ⇢�1 and where 2.6

is discretized with a 5-points stencil. This leads to the following discretization

(ai�1/2,j + ai+1/2,j + ai,j�1/2 + ai,j+1/2)uij

� ai�1/2,jui�1,j � ai+1/2,jui+1,j � ai,j�1/2ui,j�1 � ai,j+1/2ui,j+1 = h2fij
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Figure 2.13: A quantized high contrast field with lows of ⇢�1 and highs of ⇢ for n = 32
(left) and n = 128 (right). The features sizes are roughly constant as we increase the mesh
size n.

The field a is built in the following way:

• create a random (0, 1) array âij ;

• smooth â by convolving it with a unit-width Gaussian;

• quantize â

aij =

(
⇢ if âij � 0.5

⇢�1 else

Figure 2.13 gives an example of a high contrast field for n = 32 and n = 128.

We compare the number of iterations CG [91] needs to reach a residual of 10�12. In all

those experiments, a missing value indicates the factorization was not SPD and, at some

point, Cholesky (Section 2.2.4) failed. Given that the problem is defined on a regular mesh,

we use a variant of Algorithm 2.2 where the vertex-separator used is based on geometry.

This leads to a more regular clustering and, in general, to slightly better performances (in

terms of time or memory — CG iterations and the preconditioner accuracy are usually

una↵ected).

Figure 2.14 gives results for ⇢ = 1 to ⇢ = 1000. We compare the three variants for

various " and problem size N = n2. We observe three things from the experiment. First,

the number of iterations, particularly at moderate accuracies (" = 10�1 or 10�2), is greatly

reduced using InS. Further, the OrthS variant is usually the most accurate. This is likely

due to the improved robustness and accuracies of the orthogonal transformations versus

the interpolative ones. Finally, we see that, while the In and InS variants may fail due to
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Figure 2.14: 2D n ⇥ n Laplacians: each line represent a given variant: In (interpolative
and no scaling), InS (interpolative and scaling) and OrthS (orthogonal and scaling), at a
given accuracy ". Each dot gives the CG iteration count, and we run the experiments on
various problems of size N = n2, for various ⇢. The conditioning is roughly proportional to
⇢. A missing data point means Cholesky broke down and the preconditioner is not SPD.
This shows that, in general, InS and OrthS are much more accurate than In at a given
" and OrthS never breaks down. In addition, for small enough ", the accuracy is roughly
independent of the problem size N . Finally, when ⇢ is not too extreme, there is little
dependency on the condition number.

non-SPD approximations, the OrthS never fails and can always be run, even at " ⇡ 1. We

finally note that the small target residual of 10�12 in CG illustrates the good numerical

properties of the preconditioner. Previous work [95] was focused on the interpolative only

variant. Both the scaling and orthogonal transformations greatly improve the algorithm:

they reduce the CG iteration count and guarantee that the preconditioner stays SPD for

SPD problems.

Non-Regular Problems

Figure 2.15 gives results for three variants on many1 of the SPD (real & square) problems

1We only excluded Queen4147 and Bump2911 (for which the solver ran out of memory) as well as the
Andrews and denormal cases (which are so ill-conditioned that spaND never converges in fewer than 500
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from the SuiteSparse matrix collection [53] with more than 50 000 rows and columns.

Most of these problems come from PDE discretization, but not all. G2circuit for

instance comes from a circuit simulation problem and finan512 comes from a portfolio

optimization problem.

For most problems, an accuracy of " = 10�2 leads to a number of iterations usually less

than 100, while an accuracy of " = 10�4 leads usually to less than 10 iterations. Only the

Botonakis/thermomech TK problem needs more than 100 iterations for " = 10�6.

Figure 2.16 shows a performance profile regarding the CG iteration count. Each plot

compares the three variants for a given accuracy. For a given problem p and a variant v,

let CGp,v be the CG count and CG⇤
p the best result among the three variants (In, InS and

OrthS), for a problem p. Then each curve is defined as

Tv(t) =
#
n
p 2 P

���CGp,v

CG⇤
p
 t

o

#P

Each value Tv(t) represents the fraction of problems where variant v is within t times the

best algorithm. Problems for which the factorization broke down are given CGp,v =1 and

for the others the CG count was capped at 500.

On " = 10�1 and " = 10�2, InS and In often break down, so OrthS is significantly

better. When InS does not break down, however, it has similar performances as OrthS. On

" = 10�4, InS rarely breaks down, and performances are very similar to OrthS throughout

all the runs. On " = 10�6, most cases converge in a couple of iterations, so the three variants

have similar performances. The plots clearly show that OrthS is the optimal strategy, being

within at most 2 of the optimal in the worst case, and being often the winning algorithm.

Further, using orthogonal transformations guarantees that the approximation stays

SPD, allowing the algorithm to not break down even for high "’s. The number of iter-

ations of OrthS is not always strictly smaller than the InS variant, while it is for the

regular Laplacian examples. However, the extra robustness (no need for pivoting) of the

orthogonal transformations makes them quite attractive in practice for SPD problems.

We also point out that previous work [95] was restricted to standard elliptic model

problems. To the best of our knowledge, this is the first application of this algorithm to a

wide range of problems.

iterations).
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Figure 2.15: SuiteSparse matrix collection: results on many SPD problems of the SuiteS-
parse matrix collections with N � 50 000. The partitioning is only graph-based. Each
bar represents the number of CG iterations for a given problem with a given variant of
the algorithm: In (interpolative and no scaling), InS (interpolative and scaling) and OrthS

(orthogonal and scaling) at a given accuracy ". The absence of a bar means the algorithm
broke down in the face of a non-SPD pivot. This shows that, as "! 0, the algorithm con-
verges on a wide range of problems. This also shows that the scaling is beneficial in almost
all cases. The orthogonal transformations, while not always better (in terms of accuracy)
than the interpolative transformations, do guarantee that the preconditioner stays SPD and
the factorization never breaks down because of indefinite pivots.
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Figure 2.16: Performance profile for all the SuiteSparse experiments (Figure 2.15). Higher
is better. The performance criterion is #CG, the number of CG iterations. Each point
Tv(t) gives the fraction of problems for which variant v completed with a CG iterations
count less than t times the best variant. An excellent method is one that starts at t = 1
close to 1 and quickly reaches 1 as t increases. This means that this method outperforms
the other methods in almost all cases. InS and OrthS typically have the same number of
iterations, but InS sometimes leads to a non-SPD preconditioner, hence the large di↵erence
in performances. In typically leads to a much larger iteration count. Looking at the bottom
left figure (" = 10�4) for example, we see that for half of the problems In has a CG count
more than 10 times greater than the best variant. For all cases, the OrthS is within a
factor of 2 of the optimal CG count. This shows the importance of both the scaling and
the orthogonal transformations.
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2.4.2 Scalings with problem size

We now consider scalings, i.e., how does the algorithm perform as N grows. Figure 2.17

shows the evolution of the top separator size right before elimination (top) and the number of

CG iterations (bottom) for ⇢ = 1 and ⇢ = 100 for 3D problems generated as in Section 2.4.1

with a classic 7-points stencil. From now on, we will only consider the scaling & orthogonal

method (OrthS).

This figure shows two properties of the algorithm:

• the top separator size (size top) typically grows like O
�
N1/3

�
, regardless of ";

• for small enough ", the number of CG iterations is roughly O(1).

Combining those two properties, we can expect (see Section 2.3.3), for small enough ",

• a factorization time of O(N logN);

• a solve time of O(N · 1) = O(N),

which implies that the algorithm scales roughly linearly with N .

2.4.3 Timings and Memory Usage

We now study the e�ciency of the algorithm in terms of time (factorization and solve time)

and memory usage on “real-life” problems. To evaluate our algorithm, we use the following

two metrics:

• the factorization and solve time (tfact and tsolve);

• the memory footprint (memfact, the number of non-zeros in the preconditioner M).

SuiteSparse Table 2.2 shows the results on two specific problems from the SuiteSparse

collection [53], inline and audikw. For both problems, we see that the “sweet-spot” in

terms of minimal time-to-solution is not for high ", but for much smaller ". For the audikw

problem, the optimal is when using " = 10�2, and for inline, 10�4 gives optimal results. The

size top for inline are overall much smaller than for audikw. This is usually an indication

that the problem is near 2D, for which size top is typically O(1). Those problems are of fairly

small size and, as such, direct solvers (with smaller constants and better implementations)

remain competitive.
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Figure 2.17: 3D n ⇥ n ⇥ n Laplacian results for ⇢ = 1 (left) and ⇢ = 100 (right) using
OrthS. We see that size top (top separator final size, i.e., right before elimination) scales
like O(n), and that increasing the accuracy (decreasing ") essentially adds a constant; it
does not change the scaling. This should be compared with the classical ND separator size
(solid line), equal to n2. In addition, for a small enough ", the CG iteration count becomes
virtually constant. Both those facts mean the algorithm can be expected to have complexity
O(N) (see Section 2.3.3).

Problem (N) " tpart (s.) tfact (s.) tsolve (s.) nCG size top memfact (109)
audikw 1 10�1 96 128 512 277 322 0.46
943 695 10�2 95 268 103 42 606 0.73

10�4 95 500 18 7 1175 1.08
inline 1 10�1 40 8 > 224 > 500 1 0.11
503 712 10�2 41 13 44 80 13 0.13

10�4 41 18 5 8 19 0.16

Table 2.2: Some SuiteSparse performance results using OrthS. Completely general partition-
ing (no geometry information used) using Algorithm 2.2 with Metis as a vertex-separation
routine. We see that the algorithm does converge when " ! 0. The sweet spot varies
for both problems. Notice that inline 1 has a very small size top, characteristic of near-2D
problems, while the top separator has a much larger size for audikw 1.
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Ice-sheet modeling problem Table 2.3 gives the result on an ice-sheet modeling prob-

lem [145]. This problem comes from the modeling of ice flows on Antarctica using a finite-

element discretization. The problem is challenging because of the high variations in the

background field and the near-singular blocks in the matrix, leading to a condition number

of more than 1011. This problem is nearly 2D. The graph in the x, y plane is regular but

non-square. It is then extruded in the z-direction.

We illustrate the partitioning (top-left) and one layer of the solution (top-right, with a

random right-hand side) on a log scale. Note the high variations in scales in the solution.

This makes the problem very ill-conditioned and hard to solve with classical preconditioners.

Since the problem is (nearly) 2D and we are given the geometry, we partition the matrix

in the xy plane and extrude the partitioning in the z-direction. The partitioning uses a

classical recursive coordinate bisection approach [19].

We use two sequences of matrices with a di↵erent number of layers in the z-direction.

We see that size top grows very slowly, close (but not exactly) like O(1) for each set of

problems. This is typical of 2D or near-2D problems. The memory use is roughly linear for

each set of problems, and the factorization time is growing almost linearly. This validates

the e↵ectiveness of the algorithm.

We also compared the algorithm against a direct method (simply using spaND with

no compression but otherwise with the same parameters). The results are in the “Direct”

column. We note the very poor scaling of the direct method; our algorithm, on the other

hand, performs much better. In addition, we also compared the algorithm to out-of-the-

box algebraic multigrid (AMG, a classical AMG) and Incomplete LU(0). On this specific

problem, AMG simply did not converge in less than 500 iterations, the residual stalling

around 1.0. While specifically designed AMG can and does solve this problem well [145],

this illustrates that out-of-box algorithms cannot always e�ciently solve very ill-conditioned

problems. Because of this, we do not report those results. We finally tested Ifpack2’s ILU(0)

[126] with GMRES. We tested two orderings, horizontal (layer-wise) and vertical (column-

wise). The layer-wise ordering gave (by far) the best performances and we report only this

one. However, while it is competitive for small problems, it cannot solve large problems

because the number of iterations grows quickly, making the algorithm too expensive. This

illustrates the strong advantage of spaND: with a nearly constant number of iterations, we

do not su↵er from this deterioration of the preconditioner and can solve larger problems.

We note that those results can also be compared with recent work using LoRaSp [125, 42]
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on the same matrices. Overall, while the scaling with N is similar, spaND exhibits better

constants.

SPE benchmark Table 2.4 gives the results on a cubic slide of the SPE (Society of

Petroleum Engineering) benchmark [47], a classical benchmark to evaluate oil & gas ex-

ploration codes. This matrix models a porous media flow. This problem is particularly

challenging for direct methods since it resembles a 3D cubic problem and leads to a high

complexity. On the other hand, it can be solved quite e�ciently with classical precondi-

tioners like AMG or ILU.

We use various values of n, and the problem is then of size N = n3. The bottom

pictures show the size top and memfact scaling with N . We see that size top grows roughly

like O
�
N1/3

�
; this is typical of 3D problems. The memory use grows linearly with N .

Furthermore, the number of CG iterations is constant for all resolutions. This serves as

another validation of the ability of spaND to solve large-scale problems. In the last column,

we show the result using the direct solver. Since it is a direct solver, the memory use is too

great, and we cannot solve the 8M problem. Furthermore, the time to solve the 2M problem

is about 10 times more than using spaND. This shows the limitations of direct solvers for

solving large 3D problems for which the fill-in is too significant.

2.4.4 Profiling

Figure 2.18 shows the (cumulative) memory taken by M in spaND, compared to the direct

method. This shows clearly the e↵ect of the approximation. At the beginning, memory

increases slowly. Then, we keep eliminating and going up the tree and elimination becomes

more and more expansive. The sparsification, however, allows us to greatly decrease the

memory use by reducing the separator’s sizes. In this specific example, sparsification is

skipped for the first four levels. This can be seen in Figure 2.18, where spaND’s level 5

memory use is slightly greater than the Direct method. After that, however, it remains

almost constant.

Figure 2.19 shows profiling (traces) when solving a larger 16M SPE problem. This

clearly shows the advantage of the algorithm. When using a direct method, elimination

becomes excessively slow when reaching the top of the tree, and the time spent at the last

level usually dominates. For instance, in this specific problem, the last elimination would

require factoring a matrix of size approximately 2522 ⇥ 2522 = 63 504 ⇥ 63 504 (approx.
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spaND Direct ILU(0)
N tpart tfact tsolve nCG size top memfact tfact + tsolve tsolve (nGMRES)

(s.) (s.) (s.) (109) (s.) (s.)
5 layers
629 544 (16 km) 2 7 3 7 78 0.15 19 23 (92)
2 521 872 (8 km) 10 28 14 8 88 0.59 126 286 (182)
10 096 080 (4 km) 50 124 89 10 99 2.40 1036 7137 (720)
10 layers
1 154 164 (16 km) 4 23 7 7 137 0.42 86 42 (93)
4 623 432 (8 km) 20 97 34 8 147 1.73 725 544 (181)
18 509 480 (4 km) 100 538 311 10 159 6.80 — 18680 (745)

16km 8km 4km

101

102

103

t f
a
ct
+
t s
o
lv
e
(s
.)

16km 8km 4km
10�1

100

101

m
em

fa
ct

(1
09
)

O(N)
10 layers
5 layers

Table 2.3: Ice Sheet results. Unregular geometric partitioning, " = 10�2, OrthS. The top
left picture illustrates the separators (for the top 5 levels) and the top right picture shows
the solution (for a random right-hand side b) on log scale. — indicates the direct method ran
out of memory. We run ILU with 2 ordering: layer-wise ordering and vertical column-wise
ordering. The later leads to very poor convergence and is not shown here. This problem is
very ill-conditioned and typically very hard to solve using out-of-the-box preconditioners.
spaND, on the other hand, solves the problem well and scales near-linearly with the problem
size.
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spaND Direct.
n N = n3 tpart tfact tsolve nCG size top memfact tF + tsolve

(s.) (s.) (s.) (109) (s.)
128 2 097 152 7 55 18 13 504 0.62 743
160 4 096 000 18 118 44 14 635 1.2 3677
200 8 000 000 40 254 102 16 962 2.5 —
252 16 003 008 87 650 256 14 891 5.0 —

2M 4M 8M 16M
102.5

103

O
�
N2/3

�

O
�
N1/3

�

si
ze

to
p

2M 4M 8M 16M

109

1010 O
�
N4/3

�
O(N)

m
em

fa
ct

Table 2.4: SPE results. Regular geometric partitioning, " = 10�2, OrthS. “—” indicates
the direct method ran out of memory. This problem is a regular cube, and hence very hard
to solve using a direct method, since the separators are very large. spaND does not su↵er
from this problem and can solve this problem well, with a near (but not exactly) linear
scaling with the problem size.
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Figure 2.18: Memory profiling of the SPE 4M problem. Each dot shows the total (cumu-
lative) memory used by the partial preconditioner up to this level in the elimination. We
compare spaND to a direct method using Nested Dissection. Thanks to the sparsification
(started at level 5), the memory stays well under control, while a direct method takes more
and more memory as the elimination proceeds.

32GB!) that is completely dense. Our algorithm, on the other hand, spends more time at

the early levels in the tree eliminating dofs and sparsifying separators (see the large brown

bar at level 5). As a result, the time actually decreases as we reach higher levels in the tree.

This makes for a much more e�cient solver.

Notice that in this example, we start the sparsification at level 5 (i.e., we skip it for four

levels). In our experiments, this gives the best results. Starting earlier leads to very high

ranks (i.e., there is not much to compress) while delaying it too much leads to too large

matrices Apn for which RRQR becomes excessively slow.

2.5 Numerical Experiments (non-SPD)

We now present some results on non-SPD problems.

Advection-di↵usion

We begin with an advection-di↵usion equation

�r · (a(x) ·ru(x)) + b(x) ·ru(x) = f

discretized using centered finite di↵erences over [0, 1]3 with a = 10�2 and b = 1, both

constant. The resulting matrix is unsymmetric. As such, we use partial pivoted LU to
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Figure 2.19: Time profiling of the SPE 16M problem. Each bar represents the time spent
at each level in the elimination. Unlike direct methods, most of the compute time is spent
at the first levels (near the leaves), where we have to solve many small problems. A direct
method would likely be faster at the beginning, but much slower near the end, where the
fronts become very large and have to be factored exactly. Sparsification time spikes at level
5 when it is triggered. Starting sparsification sooner is ine�cient since the blocks are not
low-rank enough, and the time spent in the low-rank factorizations is then wasted.

eliminate and scale pivots.

We use GMRES, a random right-hand side, and stop GMRES when the residual kAx�
bk/kbk reaches 10�12. Figure 2.20 shows the results. We see that the ranks behave slightly

better than expected, with a complexity slightly under O
�
N1/3

�
. Furthermore, for a tight

enough tolerance (10�1 or under), the number of GMRES steps is almost constant.

Quasi-definite problems

In this section, we consider symmetric matrices of the form

A =

"
K B

B> C

#
(2.7)

where K � 0 and C � 0. Notice that there is no constraints on B. Such matrices are called

quasi-definite [72]. In the following, we show that a particular sequence of eliminations,

scalings, and sparsifications does not destroy the quasi-definite character of A. We refer to

sets of rows and columns associated with K as K-clusters and to sets of rows and columns

associated with C as C-clusters.
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Figure 2.20: Advection-di↵usion results
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Lemma 2.1. Assume2 A is quasi-definite and of the form (2.7). Then the following opera-

tions do not alter the quasi-definite character of A or keep the trailing matrix quasi-definite:

• eliminating any K or C-clusters;

• scaling any K or C-clusters;

• sparsifying any previously scaled K or C-clusters.

Proof. Let us first consider eliminating a K-cluster. Denote it by p and the other K-dofs

by q. We have

A =

2

664

Kpp Kpq Bp

K>
pq Kqq Bq

B>
p B>

q C

3

775

After eliminating p, the Schur complement is

"
Kqq �K>

pqK
�1
pp Kpq Bq �K>

pqK
�1
pp Bp

B>
q �B>

p K
�1
pp Kpq C �B>

p K
�1
pp Bp

#

where we notice that Kqq �K>
pqK

�1
pp Kpq � 0 since it is the Schur complement of an SPD

matrix, and C�B>
p K

�1
pp Bp � C � 0 since Kpp � 0. Now assume we are eliminating C-dofs.

We can apply the same reasoning on �A and we conclude immediately.

Now consider scaling a K-cluster. With Kpp = LpL>
p , this leads to

2

664

I L�1
p Kpq L�1

p Bp

K>
pqL

�>
p Kqq Bq

B>
p L

�>
p B>

q C

3

775

which is quasi-definite since "
I L�1

p Kpq

K>
pqL

�>
p Kqq

#

is SPD and C is unchanged. Now consider scaling a C-cluster. One can apply the above

reasoning on �A and we conclude.

Finally, consider sparsifying some K-cluster, p. Assume p has been scaled such that

Kpp = I. We consider sparsification involving all of p’s K-neighbors, but possibly only a

2Both Léopold Cambier and Bazyli Klockiewicz contributed to this proof



CHAPTER 2. SPARSIFIED NESTED DISSECTION 58

subset of its C-neighbors. This means that after sparsification, A has the form

2

66666664

I Wcq ⇥ Wc

I " ⇥ "

W>
cq " Kqq ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥
W>

c " ⇥ ⇥ ⇥

3

77777775

where ⇥ indicates unchanged entries and " indicates entries that will be dropped. Dropping

the " blocks lead to a trailing matrix such as

2

66666664

I Wcq ⇥ Wc

I ⇥
W>

cq Kqq ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥
W>

c ⇥ ⇥ ⇥

3

77777775

From Theorem 2.1 we know that the top 3⇥ 3 block is SPD. In addition, the bottom 2⇥ 2

block is unchanged, and as such, is still negative definite. We conclude that the trailing

matrix is quasi-definite. If we sparsify instead C-dofs, one can repeat the above argument

on �A and the conclusion follows.

Given this result, we propose the following spaND algorithm for quasi-definite matri-

ces. This algorithm relies on the fact that, if K and C-dofs are eliminated and sparsified

separately, then A remains quasi-definite. As such we can guarantee pivots to always be

non-singular in exact arithmetic. Note that since A is not SPD, this does not imply stability.

We then first perform a classical MND ordering and clustering of A, but then further divide

every cluster into K and C-dofs. We call K and C clusters originating from the same inter-

face siblings, and we never merge K and C-clusters. Hence, K and C-dofs remain separated

throughout the algorithm. The algorithm then sparsifies K-interfaces and C-interfaces sep-

arately, considering every edge except edges to their C or K-sibling. Algorithm 2.4 shows

the complete algorithm.

We now present results on the Biot problem. This problem models a deformable porous

medium, and the resulting matrix has the quasi-definite structure as described before. The

K-block corresponds to velocities and C-block to pressure unknowns (see [54, Section 5.3]).
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Algorithm 2.4 spaND for quasi-definite matrices
Require: Quasi-definite A, Maximum level L

Compute a ND ordering for A, infer interiors, separators and interfaces (see Section 2.2.3)
Further divide every interface into K and C-clusters
for all ` = 0, . . . , L� 1 do

for all I interior do
Eliminate I

end for
for all B interface between interiors do

Scale B
end for
for all B K-interface between interiors do

Sparsify B, not including the edge from B to its sibling
end for
for all B C-interface between interiors do

Scale B
end for
for all B C-interface between interiors do

Sparsify B, not including the edge from B to its sibling
end for

end for

The matrices are generated using the Sfepy [49] multiphysics example, available at http:

//sfepy.org/doc/examples/multi_physics-biot.html. Figure 2.21 shows the results.

We see that the top separator size, again, follows closely O
�
N1/3

�
. The GMRES iteration

count grows slowly for " = 10�2. The factorization time is well below O
�
N2

�
, though

slightly larger than O(N).

2.6 Conclusion

In this chapter, we developed a sparsified Nested Dissection algorithm. The algorithm com-

bines ideas from Nested Dissection (a fast direct method) and low-rank approximations to

reduce the separator sizes. The result is an approximate factorization that can be computed

in near-linear time and results in an e�cient preconditioner.

We note that it di↵ers from the classical way of accelerating sparse direct solvers (like

MUMPS with BLR and Pastix with HODLR). Instead of using H-algebra to compress large

fronts, it simply keeps the fronts small throughout the algorithm by sparsifying them at

each step of the algorithm.

http://sfepy.org/doc/examples/multi_physics-biot.html
http://sfepy.org/doc/examples/multi_physics-biot.html
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Prior work in this area included the HIF algorithm [95]. While our work resembles

it, HIF is limited to n ⇥ n ⇥ n regular problems [95] and does not use either the block

diagonal scaling or orthogonal transformations. The LoRaSp algorithm [125] is also similar.

LoRaSp’s performances however may degrade when the ranks at the leaf level are not small

and it does not have the same sparsity guarantees [42]. The ordering and the ability to skip

compression for some levels fixes this.

We discuss three variants of the algorithm, depending on the low-rank approximation

methods (interpolative or orthogonal) and the prior use, or not, of scaling. We also discuss

the algorithm when used on non-SPD matrices. We showed through extensive numerical

experiments that the scaling has a large impact on the preconditioner’s accuracy. In addi-

tion, the use of orthogonal transformations implies that the algorithm does not break down

even when " ⇡ 1 when the matrix is SPD. gr We then tested the algorithm on both ill-

conditioned problems (typically hard for preconditioners) and “cubic” problems (typically

hard for direct methods). On these problems, spaND is very e�cient, with very favorable

scaling for the factorization and near-constant CG iteration count.

Multiple research directions remain unexplored. The compression algorithm used was a

simple (but still quite expensive) RRQR algorithm. Other fast algorithms could be used,

like randomized methods or skeletonized interpolation (where the c unknowns of the in-

terpolative factorization are picked a priori using some heuristic). These techniques could

greatly accelerate the compression step. The loss of accuracy remains to be studied.

The partitioning algorithm is well-suited for matrices arising from the discretization of

elliptic PDE’s, where we know that well-separated clusters have low numerical ranks. It

would be interesting to explore other partitioning algorithms, for instance for indefinite

matrices coming from Maxwell’s equations.

Finally, we mention that spaND exhibits more parallelism than direct methods. Indeed,

most of the work occurs near the leaves of the tree. This means less synchronization and

more parallelism. This is in contrast with direct methods based on Nested Dissection where

the bottleneck is usually the factorization of the top separator at the root of the tree.



Chapter 3

TaskTorrent

Part of this chapter contains the full text of [34]. This work is © 2020 IEEE. Reprinted, with

permission, from Léopold Cambier, Yizhou Qian, Eric Darve. TaskTorrent: a Lightweight

Distributed Task-Based Runtime System in C++. 2020 IEEE/ACM 3rd Annual Parallel

Applications Workshop: Alternatives To MPI+X (PAW-ATM). 2020.

3.1 Introduction

3.1.1 Parallel runtime systems

Classical parallel computing has traditionally followed a fork-join (as in OpenMP) or bulk-

synchronous (MPI) approach. (Figure 3.1a shows the skeleton of a typical MPI program).

This has many advantages, including ease of programming and predictable performance. It

has however a key downside: many points of synchronization during execution are added,

even when not necessary.

Runtime systems take a di↵erent approach. The key concept is to express computations

as a graph of tasks with dependencies between them (Figure 3.1b). This graph is directed

and acyclic, and we will later refer to it as the task DAG. Given the DAG, the runtime

system can extract parallelism by identifying which tasks can run in parallel. Tasks are then

assigned to processors (either individual cores, nodes, accelerators, etc). The advantage of

this method is that it removes all unnecessary synchronization points.

62
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3.1.2 Existing approaches to describe the DAG

A key design choice in runtime systems is how to express the DAG. At a high-level, two

approaches have been primarily used.

Sequential Task Flow (STF)

In this approach, the graph is discovered by the runtime using a sequential semantics, that is,

typically, on each node, a single thread is responsible for building the DAG. Di↵erent mech-

anisms to compute task dependencies can be used. Often, this takes the form of inferring

dependencies based on specifying data sharing rules (e.g., READ, WRITE, READWRITE).

This is the approach taken by Legion/Regent [13] 1 and StarPU [11]. In both, the user

first defines data regions and tasks operating on those regions (as inputs or outputs). Regent

maintains a global view of the data, and data regions correspond to a partitioning of the

data. The user is also able to write mappers to indicate how to map and schedule tasks to

the available hardware. StarPU uses data handles referring to distributed memory bu↵ers.

The program is then written in a sequential style (with for loops, if/else statements, etc.),

creating tasks on previously registered data regions. The runtime system then discovers

task dependencies, builds the DAG and executes tasks in parallel.

The key in the STF approach is that the DAG has to be discovered through sequential

enumeration. This restriction may have performance implications but is attractive to the

programmer since the program is easy to write and understand.

1Legion is the name of the lower-level C++ API, while Regent is the name of the higher-level language
based on Lua.

for (auto i : local0)
compute0(i);

if ([...])
{ MPI_Send(m, ...); }

else
{ MPI_Recv(m, ...); }

for (auto i : local1)
compute1(i);

(a) A typical MPI program

a

b

c

d

e

f

g

(b) Example of DAG of tasks.

Figure 3.1: More parallelism can be extracted using a tasks DAG: task d needs to wait for
tasks a and b. However, task f can run as soon as task c has finished.
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/** Define task **/
void task (...) {...}
/** Register data **/
data = [...]
/** Process DAG **/
for(k ...)

task(data[k], data[k1], ...)

(a) STF based program. Dependencies are in-
ferred through data sharing rules.

/** Task deps. expressed
* as functions of K **/

in_deps = (K k){...}
task = (K k){...}
out_deps = (K k){...}
/** Seed tasks **/
for(k in kinit)

start(k)

(b) PTG based program. Task de-
pendencies are defined using func-
tions over K. Computation is trig-
gered by seeding the initial tasks.

Figure 3.2: Schematic of STF and PTG programs.

Parametrized Task Graph (PTG)

The PTG approach is another method to express the DAG. Using some index space (K)

to index all tasks, functions of K are used to express tasks and their dependencies. As an

example, the DAG could be defined by specifying three functions of K (other choices are

possible): one for the in-dependencies, one for the computational task itself, and one for the

out-dependencies. By running these functions as needed, the runtime discovers the DAG

dynamically.

PaRSEC [26] takes that approach, using a custom language (JDF) to express the PTG.

In PaRSEC, in and out-dependencies specifications contain both tasks and data.

The PTG format has multiple advantages. Since task in/out-dependencies can be inde-

pendently queried at any time, it simplifies task management, leading to minimal overhead

during execution. It also naturally scales by parallelizing both the DAG creation and DAG

execution. In contrast, an STF code uses, in its purest form, a single thread to discover

the DAG. It also removes the need to store in memory large portions of the DAG of tasks.

Instead, the runtime can query the relevant functions only as needed and discover the DAG

piece by piece.

The main drawback of the PTG approach is that the program no longer has a sequential

semantics, which makes it harder to understand the program’s behavior at first sight. Fig-

ure 3.2 illustrates at a higher level the di↵erences between the STF and the PTG approach.
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3.2 Previous work

Runtime systems As mentioned in Section 3.1.2, other task-based runtime systems exist.

We highlight some of their characteristics. PaRSEC [26] is a runtime system centered around

dense linear algebra. It takes the PTG approach but uses a custom programming language,

the JDF. This can make adoption harder for new users. Legion [13] is a general-purpose

STF runtime. It has many features and can be used from C++ but requires the user to

express everything using Legion’s data structures. It is also intended to be used primarily

with GASNet [23] and not MPI. Regent [139] proposes a higher-level language on top of

Legion, making programming more productive. Unfortunately, obtaining high performance

requires the user to program directly the mapper which is time-consuming and requires a

detailed understanding of the inner workings of Legion. Finally, StarPU [11] uses C++ and

is STF-based. The data is initially distributed by the user like a classical MPI code, and

various scheduling strategies can be used to further improve performance. However, user

data still has to be wrapped using StarPU’s data structures.

In designing TTor we chose to focus on the following features. The message-passing

paradigm requires the programmer to distribute data but makes it easy to reach good per-

formance because it minimizes the need for global synchronization and communication. It

also simplifies the library implementation. MPI and C++ make integration into other codes

easier. Active messages are necessary because of the asynchronous nature of computations.

Finally, the PTG approach leads to a minimal runtime overhead. Note however that the

choice of PTG has drawbacks: it can be di�cult for the programmer to reason about task

dependencies. This can be easier in some applications (like linear algebra) than others.

TTor also does not consider concepts like memory a�nity or accelerators at the moment.

This is reserved for future work.

Task-based parallelism Task-based parallelism is now a common feature of many par-

allel programming systems.

Cilk [98, 67] introduced a multi-threading component to C in 1996, and Cilk-5 introduced

spawn and asynchronous computations. Many other e↵orts followed, including OpenMP

[51] (with tasking introduced in version 3.0), Intel TBB [128] (where task DAGs can be

expressed), Cilk Plus [130], XKaapi [70], OmpSs [56], Superglue [146], and the SMPSs

programming model [121, 122]. The Plasma [3, 4] (for CPU) and Magma [147] (for CPU and

GPU) libraries are replacements for multithreaded LAPACK, where parallelism is obtained
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through tiled algorithms using a dynamic runtime, Quark [162].

Notice that all the previously mentioned work is typically only useful in a shared-memory

context. In particular, there is no support to let one rank trigger (or fulfill the dependency

of) a task on another rank.

Distributed programming An explicit goal of TTor is to provide support for distributed

computing.

The most common distributed programming paradigm is using explicit message passing

like in MPI. In MPI, ranks are completely independent and only communicate with each

other through explicit message passing. Charm++ [99] takes an object-oriented approach.

It exposes chares which are concurrent objects communicating through messages. We also

mention DARMA/vt [108], a tasking and active message library in C++, with other features

such as load balancing and asynchronous collectives. We decided to implement one-sided

active messages on top of classical MPI non-blocking sends and receives given its wide and

ubiquitous support. This facilitates integration with existing codes. Finally, in the PGAS

(partitioned global address space) model (like GASNet [23]), each rank can access a global

address space through read (get) and write (put) operations. Chapel [31], Fortran Co-arrays

[116], UPC [58] and UPC++ [164] are examples of PGAS-based parallel programming lan-

guages. One of the arguments of the PGAS model is that it increases developer productivity

by presenting a simpler programming model compared to explicit message passing.

Active messages One-sided active messages is another important feature of TaskTorrent.

Von Eicken et al. [151] argued in 1992 that active messages are a powerful mechanism to

hide latency and improve performance.Active messages are also a central part of UPC++

where they resemble the ones in TTor. In UPC++, however, remote data is referred to

using global data structures, while TTor tends to use the C++ variable capture mechanism

in lambda functions. TTor takes the same custom-compiler free approach as UPC++: it

only requires a C++ compiler and no other custom compiler on top of it (like in UPC or

PaRSEC).

Hardware-aware programming While this is not relevant to this work, we note that

another important aspect of high-performance computing is to fully exploit the complex

heterogeneous machines.
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For instance, machines may have various number of CPUs, custom accelerators (GPUs),

and deep memory hierarchies far from what is exposed by a flat memory model. Program-

ming and taking advantage of this is a non-trivial task for the programmer.

Some runtime systems try to take advantage of this automatically, for instance, Legion

and StarPU. Other works in this direction include X10 [41], Sequoia [60], HwLoc [30]

(Hardware Locality, used by StarPU), and Phalanx [68].

3.2.1 Contributions

In this chapter, we present TaskTorrent (TTor). TTor is a lightweight, distributed task-based

runtime that uses a PTG approach. Our main contributions are:

• We show how to combine a PTG approach with one-sided active messages.

• A mathematical proof is provided for the correctness of our implementation.

• We benchmark TTor and show that it matches or exceeds the performance of StarPU

on sample problems.

TTor has a couple of notable features compared to existing solutions

• It is a C++14 library with no dependencies other than MPI.

• TTor’s implementation leads to a small overhead and handles well small task granu-

larity (about 10 µs and up). This means that TTor can be used on any existing code,

without needing to fuse or redefine tasks, or change existing algorithms.

• Default options in TTor are designed to provide good performance “out-of-the-box”

without requiring the user to tune or optimize internal parameters or functionalities

of the library.

• The user can use their own data structures without having to wrap their data in

opaque data structures.

• It is perfectly scalable in the following sense. Consider a provably scalable numerical

algorithm (e.g., there exists an iso-e�ciency curve). Assume that (1) the parallel

computer is composed of nodes with a bounded number of cores, but with an un-

bounded number of nodes, and (2) that each node in the DAG has a bounded number
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of dependencies. Then if the algorithm is executed using TTor it will remain scalable.

Said more simply, TTor does not introduce any parallel bottleneck.

We emphasize that TTor is a general-purpose runtime system. The applications in this

chapter are mostly in linear algebra, but there are no features or optimizations that are

specific to linear algebra in this version of TTor.

3.3 TaskTorrent

TTor uses a PTG. The DAG is expressed by providing at least three functions: (1) one

returning the number of in-dependencies of every task; (2) one that runs the computational

task and fulfills dependencies on other tasks; (3) one returning the thread each task should

be mapped to (an option is provided to bound the task to the thread or leave it stealable).

When their dependencies are satisfied, tasks are inserted into a thread pool, where a work-

stealing algorithm keeps the load balanced between the threads.

Tasks then run and fulfill other tasks’ dependencies, locally (on the same rank) or

remotely on a di↵erent rank. In the case of remote dependencies, since all computations are

asynchronous, the receiver rank cannot explicitly wait for data to arrive. Hence, one-sided

active messages are used. An active message (AM) is a pair (function, data). Once the

AM arrives on the receiver, the function is run with the data passed as arguments. This is

typically used to store the data and fulfill dependencies, eventually triggering more tasks.

This approach means TTor never needs to store the full DAG. Task dependencies are

queried only when needed, and the DAG is discovered piece by piece. In particular, TTor

becomes aware of the existence of a specific task only when a task fulfills its first dependency.

This makes TTor scalable and lightweight. The full DAG is never stored or even explored

by any specific thread or rank, and the task management overhead is minimal. Figure 3.3

illustrates this local DAG + AM model.

3.3.1 API Description

TTor’s API can be divided into two parts, a shared memory component (expressing the

PTG) and a distributed component (used for AMs). The combination of those two features

is what distinguishes TTor from other solutions and is one of the factors that makes TTor

lightweight.
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Rank a Rank b

DAG =
functions
over some
index space

Between
ranks =
one sided
AMs

Figure 3.3: The model of TTor: a distributed graph of tasks expressed using a parametrized
task graph (solid arrows), with explicit active messages (dashed arrows) between ranks to
asynchronously insert/trigger tasks.

Shared memory components

Threadpool A Threadpool is a fixed set of threads that receive and process tasks. A

Threadpool with n_threads threads can be created by Threadpool tp(n_threads, &comm). (comm

is a Communicator; see Section 3.3.1). Tasks can be inserted directly in the thread pool, but

typically this is done using a Taskflow. The thread pool joins when calling tp.join(). This

returns when all the threads are idle and all communications have completed. Section 3.3.2

explains in detail the distributed completion mechanism.

Taskflow A Taskflow<K> tf (for some index space K, typically an integer or a tuple of

integers) represents a Parametrized Task Graph. It is created using Taskflow<K> tf(&tp)

where tp is a Threadpool. It is responsible for managing task dependencies and automatically

inserting tasks in tp when ready. At least three functions have to be provided:

• (int)indegree(K k) returns the number of dependencies for task k.

• (void)task(K k) indicates what task k should be doing when running. Typically this is

some computational routine followed by the trigger of other tasks. For instance, task

k1 can fulfill one dependency of task k2 by tf.fulfill_promise(k2).

• (int)mapping(K k) indicates what thread should task k be initially mapped to.

In general, tasks can be stolen between threads to avoid starvation. This is done using a

work-stealing algorithm. tf.set_binding(binding) can be used to make some tasks bound

to their thread. Optional priorities can also be provided through tf.set_priority(priority).

Finally, tf.fulfill_promise(k) is used to fulfill one of the dependencies of task k on Taskflow

tf. See Figure 3.4.
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Thread t

(int)mapping(K k)

(int)indegree(K k)

(void)run(K k)

Figure 3.4: The Taskflow<K> API. (int)indegree(K k) returns the number of incoming depen-
dencies of task k. (void)run(K k) indicates what function to run. (int)mapping(K k) returns
what thread the task should be mapped (but not bound) to.

Distributed memory components

Active Messages (AMs) are used to allow tasks on rank a to trigger tasks on rank b 6= a

without rank b explicitly waiting for messages.

An AM is a pair (function, payload). When an AM is sent from rank a to rank b, the

payload is sent through the network, and upon arrival, the function (with the associated

payload passed as argument) is run on the receiver rank. This allows for instance to store

the payload at some location in local memory and then trigger tasks.

Active message An ActiveMsg<Ps...> am pairs a function (void)fun(Ps... ps) and a payload

ps. Note that Ps... is a variadic template: di↵erent types can be used as arguments. A

view<T> can be used to identify a memory bu↵er (i.e., a pointer and a length) and is built

as view<T> v(pointer, num_elements).

The AM can be sent to rank dest over the network using am->send(dest, ps...). When

sent, the payload is serialized on the sender, sent over the network, deserialized on the

receiver, and the function is run as fun(ps...). The payloads are always serialized in a

temporary bu↵er by the library. As such, the user-provided arguments can be immediately

reused or modified as soon as send returns. am->send is thread-safe and can be called by any

thread.

TTor also provides large active messages. A large AM can be used to avoid temporarily

copying large bu↵ers. A large AM payload is made of one view<T> and a series of arguments

Ps.... The view will be sent and received directly without any extra copy. It is associated

with three functions: (1) a function to be run on the receiver rank that returns a pointer

to a user-allocated bu↵er, where the data will be stored; (2) a function to be run on the
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receiver rank to process the data upon arrival; (3) a function to be run on the sender rank

when the bu↵er on the sender side can be reused. This is an important feature to avoid

costly copies and/or when memory use is constrained.

Communicator A Communicator comm is a C++ factory to create AMs and is responsi-

ble for sending, receiving, and running AMs. Communicator comm(mpi_comm) creates a com-

municator using the mpi_comm MPI communicator. An AM can then be created by am =

comm.make_active_msg(f) where f is a (void)f(Ps...) function. AMs always have to be created

in the same order on all ranks because we need to create a consistent global indexing of all

the AM that need to be run.

Example

The following shows how the di↵erent components can be used together. This assumes

compute(k) does the computation related to task k. In addition, mapping(k) returns a thread

for task k (which is typically k % n_threads), n_deps(k) gives its number of in-dependencies,

deps(k) iterates through its out-dependencies, and task_2_rank(k) returns the rank it is

mapped to. n_threads is the desired number of threads to use. We assume that task outputs

are stored in data. The execution of the DAG starts when the initial tasks are seeded and

finishes when tp.join() returns.

/** Initialize structures **/
Communicator comm(MPI_COMM_WORLD );
Threadpool tp(n_threads , &comm);
Taskflow <int > tf(&tp);
/** Create active message **/
am = comm.make_active_msg(

[&]( int d, int k, payload pk) {
data[k] = pk;
tf.fulfill_promise(d);

});
/** Define Taskflow **/
tf.set_mapping(mapping );
tf.set_indegree(n_deps );
tf.set_run ([&]( int k) {

compute(k);
for (auto d : deps(k)) {

int dest = task_2_rank(d);
if (dest == my_rank) {

tf.fulfill_promise(d);
} else {

am ->send(dest , d, k, data[k]);
}
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}
});
/** Start initial tasks **/
for (auto k : initial_tasks)

tf.fulfill_promise(k);
/** Wait for completion **/
tp.join ();

3.3.2 Implementation Details

Taskflow and threadpool

The thread pool is implemented with two std::priority_queue<Task*> per thread, storing the

ready-to-run tasks. Since some tasks can be stolen and others not, each thread has two

queues. The priority queues are protected using std::mutex so that tasks can be inserted

into a thread queue by any other thread.

One of the main goals of the Taskflow<K> implementation is to support arbitrary task flows

with keys belonging to any domain. Hence, we store dependencies in a std::unordered_map<K

,int>. Furthermore, to avoid having one central map storing all dependencies (whose access

needs to be serialized), the map is distributed across threads. Task’s dependencies are split

among the threads using the mapping function: the dependency count of task k is stored in

the map associated to thread mapping(k). Each distributed map is always accessed by the

same thread, preventing data races.

Figure 3.5 summarizes the relationships between the di↵erent components.

Active messages and communication thread

Active messages (AM) are implemented by registering functions on every rank in the same

order. Each AM then has a unique ID shared across ranks. This ID is later used to retrieve

the function on the receiver side. Communication is performed using MPI non-blocking

sends and receives. The Communicator maintains three queues:

1. a queue of serialized and ready-to-send messages;

2. a queue of send messages, to be later freed when the associated send completes;

3. a queue of receive messages, to be later run and freed when the associated receive

completes.
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unordered_map<K,int>

priority_queue<Task*>
+ mutex

unordered_map<K,int>

priority_queue<Task*>
+ mutex

Thread t ... Thread t
0

Partition of K

Taskflow<K>

Threadpool

tf.fulfill_
promise(k)

Deps.
tasks

Comp.
tasks

Figure 3.5: Taskflow and Threadpool implementation. Each thread has two queues (only
one shown here) of ready tasks (priority_queue<Task*>) protected by a mutex. A distributed
map (unordered_map<K,int>) is used to store task dependency counts. tf.fulfill_promise(k)

is used to update (or initially create) the dependency count of task k. To do so, a task
“Deps. task” (which cannot be stolen) decreasing its count is inserted on thread mapping(k).
When the count reaches 0, the computational task “Comp. task” is created and inserted
into mapping(k)’s ready queue. In general, non-bound tasks can be stolen between threads.

On the sender side, when sending (thread-safe) an active message am->send(dest, ps...),

the various arguments ps... are first serialized into a bu↵er, along with the AM ID. The

bu↵er is placed in a queue in the communicator. When calling progress(), that bu↵er will

eventually be sent using MPI_Isend and later freed when the send has completed.

On the receiver side, calling progress() performs the following:

1. As long as it succeeds, it calls MPI_Iprobe to probe for incoming messages and (1)

retrieves the message size using MPI_Getcount, (2) allocates a bu↵er, and (3) receives

the message using MPI_Irecv.

2. It goes through all received messages and tests for completion with MPI_Test. If it

succeeds (1) it retrieves the AM using the ID from the bu↵er, (2) deserializes the

bu↵er, passes the arguments to the user function, and runs the user function.

MPI tags are used to distinguish (1) messages of size smaller or larger than 231 bytes, and

(2) regular and large AMs.

We say that an AM is queued when calling am->send(...) and processed once their

associated function has finished running. Since AM are run as soon as their associated

bu↵er is ready, they can be processed on the receiver in a di↵erent order than they are

queued on the sender. However, messages are always received (calling MPI_Irecv) in the same

order they are sent (calling MPI_Isend). As such, when an AM is processed, all previously

sent AM are pending in the receiver’s queues.
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Figure 3.6 illustrates the one-sided AM implementation.

Distributed completion algorithm

We now discuss the distributed algorithm to determine completion. We present the algo-

rithm along with a proof of correctness. The di�culty in detecting completion lies in the

fact that even if all taskflows are idle, the program may not be finished since active messages

(AM) may still be in-flight. An example of a flawed strategy is to request that all ranks

send an IDLE signal to one rank when they have no tasks running. This strategy will lead to

early termination of the program in many cases. Hence, detecting completion is non-trivial

in a distributed setting.

Completion In the following, we will consider a series of events such as queuing and

processing messages, checking certain conditions, etc. Within a thread, we assume a total

ordering between events which lets us associate each of them with a unique real number

which we informally call “time”. We consider a program with two threads per rank: a main

(MPI) thread responsible for MPI communication (asynchronous sends and receives) and

AMs, and a worker thread responsible for executing all the user-defined tasks (in practice,

the worker thread may be a thread pool, but this is not relevant).

We say that an AM is queued on a sending rank when it is issued either by the worker

or the main thread. When issued by a worker, we assume that queueing always finishes

before the completion of the enclosing task. An AM is processed on the receiving rank

by the main thread. We assume that if an AM results in a task being inserted in the task

queue of the worker thread, this insertion must complete before the end of the enclosing

AM.

To define our ordering between ranks, we assume that if a message is queued at time t and

processed at time t0 then t0 > t. We assume that messages that are queued are eventually

processed if the network and all ranks are idle except for handling these messages (progress

guarantee), and that all communications are non-blocking (no deadlocks are possible). TTor

satisfies those assumptions by construction.

Definition 3.1 (Completion). We say that {ta}a is completion time sequence if:

• Rank a is idle at time ta for all a;
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Rank a Rank b

Communicator comm
am = comm.make_active_msg(fun)

am->send(b, args)

char* buf = malloc(size)
serialize(buf, am->id(), args)

while(/** Is not done **/)
comm.progress()

for(/** Queued AMs **/)
MPI_Isend(b, buf, &request)

for(/** Sent AMs **/)
MPI_Test(&success, request)
if(success) free(buf)

while(/** Is not done **/)
comm.progress()

while(/** Probe is succesfull **/)
MPI_Iprobe(&success, &status)
if(success)
MPI_Get_count(&status, &size)
char* buf = malloc(size)
MPI_Irecv(a, buf, &request)

for(/** Received AMs **/)
MPI_Test(&success, &request)
if(success)
int id = get_id(buf)
am[id]->run(buf)

auto args = deserialize(buf)
fun(args...)
free(buf)

�

�

�

�

Figure 3.6: Active messages implementation. User’s interface is in grey, TTor’s implemen-
tation in white. This shows the main code path through which an active message goes
through. On the sender’s side, after a call (from any thread) to am->send, the AM is seri-
alized and queued in the communicator. The main thread then repeatedly call progress(),
which internally call MPI_Isent and, when the send has completed, frees the bu↵er. The
receiver also calls progress(), which internally probes for incoming messages (MPI_Iprobe)
and calls receive (MPI_Irecv) when the probe is successful. When the receive has completed,
the main thread on the receiver rank deserializes the payload and runs the active message.
Circular arrows � indicate that the associated box is internally repeated as many times as
necessary. Note that progress() has to be called until all communications have completed.
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• For any pair of ranks (a, b) and all AMs from a to b, all AMs queued before ta have

been processed on b before tb.

We can prove that this definition implies the intuitive definition of completion, which is

that, after ta, if we keep the program running, rank a remains idle forever.

Proof. Assume that the conditions in the definition hold. Since at ta, a is idle, it can

only resume activity after receiving a message. Assume that a processes a message at time

t > ta. Pick a such that t is minimal. There must exist a rank b that queued this message.

Since b has sent this message but b was idle at time tb, it must have processed a message at

some time t0 with t0 > tb. Since t0 < t, this contradicts our assumption that t is minimal.

Therefore no such message can exist.

Completion algorithm The algorithm is based on making sure, after all ranks are idle,

that the number of messages sent is equal to the number of messages received. For this

verification to work, we need to proceed in two steps. We define qa(t) (resp. pa(t)) to be

the total number of queued (resp. processed) AMs on rank a at time t. In step 1, once idle,

rank a will send to the main rank, at time t�, the pair (qa(t�), pa(t�)). Then the main rank

will request from a a confirmation. In step 2, at time t+ > t�, if the value of (qa, pa) has

not changed on rank a, a will send back a confirmation message. This leads to the following

definition

Definition 3.2 (Synchronization time). Assume that for all ranks a, we have defined a pair

of times (t�a , t
+
a ) with t�a < t+a . We say that t̄ is a synchronization time for (t�a , t

+
a ) if

t�a < t̄ < t+a , for all a

Before giving the exact algorithm, we prove a su�cient condition to establish completion.

Lemma 3.1. Let pa(t) (resp. qa(t)) be the number of processed (resp. queued) AMs on rank

a at time t. Assume that there exists a synchronization time t̄ for (t�a , t
+
a ) and that for all

a

• the worker thread on rank a is idle at t�a ;

• p̄a = pa(t�a ) = pa(t+a ) (no new processed AM between t�a and t+a );

• q̄a = qa(t�a ) = qa(t+a ) (no new queued AM between t�a and t+a );
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•
P

a q̄a =
P

a p̄a.

Then the sequence {t�a }a is a completion time sequence for the execution.

Proof. Let us first prove that rank a is idle during the entire period [t�a , t
+
a ]. Rank a is idle

at t�a . Since pa(t�a ) = pa(t+a ), no AM was processed at any time t 2 [t�a , t
+
a ]. So no tasks

may have been inserted in the worker task queue by the main thread. Hence, rank a is idle

during [t�a , t
+
a ].

Now consider a message m queued at tq on rank q and processed at tp on rank p. Recall

that
P

a q̄a =
P

a p̄a. Since no messages are queued or processed on [t�q , t
+
q ] and [t�p , t

+
p ], we

have four possibilities:

• tq < t�q and tp < t�p . Then m contributes +1 to both sides of the equality
P

a q̄a =
P

a p̄a;

• tq > t+q and tp > t+p . Them m does not contribute to either side of the equality
P

a q̄a =
P

a p̄a;

• tq > t+q and tp < t�p . Since t�p < t̄ < t+q this would imply tp < tq which is not possible

(a message cannot be processed before it is queued);

• tq < t�q and tp > t+p . Then m contributes +1 to the left-hand-side of
P

a q̄a =
P

a p̄a

but 0 to the right-hande-side. Since this is the last remaining case, and that all other

cases lead to +1 or +0 on each side of the equality, this case cannot happen if the

equality is to hold.

We conclude that every message from q to p queued before t�q has been processed before

t�p , and hence {t�a }a is a completion time sequence.

Figure 3.7 illustrates this lemma and the case of an AM “crossing” the {t�a }a and {t+a }a
boundaries (the “envelope”). This lemma shows that any AM queued before the envelope

has to be processed before. Since no tasks are running at any time within the envelope on

any rank, the envelope represents a completion time. In particular, {t�a }a is a completion

time sequence.

We now describe the algorithm. Rank 0 will be responsible to detect completion by

synchronizing (t̄) with other ranks r > 0. When a rank is idle, the main thread on all

ranks does the following.
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t̄

Time
Ranks

t�a
t�b

t�c

t+a
t+b

t+c

(a) Synchronization time t̄, completion
times {t

�
a }a, and confirmation times

{t
+

a }a.

t̄

ma

(b) The completion algorithm has to en-
sure that no message may cross the “en-
velope” created by {t

�
a }a and {t

+

a }a if
it is to detect completion.

Figure 3.7: Completion algorithm (see Lemma 3.1).

1. All ranks r continuously monitor qr(t) and pr(t) (which only contain the user’s AM

count and not the messages used in the completion algorithm). If at a time t�r

those values di↵er from the latest observed ones, rank r sends a message COUNT =

(r, qr(t�r ), pr(t
�
r )) to rank 0 with those updated counts.

2. Rank 0 continuously observes the latest received counts. Since qr(·) and pr(·) are

non-decreasing it is enough to consider the greatest received counts and discard the

others. If at time t̃ (implemented as an always increasing integer counter),
P

r qr(t
�
r ) =P

r pr(t
�
r ) and that sum is di↵erent from the latest observed sum, rank 0 sends a

REQUEST = (qr(t�r ), pr(t
�
r ), t̃) message back to all ranks r > 0.

3. All ranks r continuously monitor the REQUEST messages from rank 0. They process the

one with the largest t̃, and discard the others. At time t+r , if qr(t
�
r ) = qr(t+r ) and

pr(t�r ) = pr(t+r ), they send a CONFIRMATION = (t̃) back to rank 0.

4. Rank 0 continuously observes the received CONFIRMATION. If all ranks replied with the

latest t̃, the program has completed. Rank 0 then sends a SHUTDOWN message to all

ranks.

5. All ranks r continuously listen to the SHUTDOWN message. When received, the program

has completed and rank r terminates.

Note that although we write the algorithm as a sequence from 1 to 5, the word “contin-

uously” indicates that this is implemented as a loop that keeps attempting to perform each

step until SHUTDOWN is received.
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We note that even when AM m1 and m2 are sent from rank a to b in that order, they

may be processed in any order on rank b. This is because MPI messages are guaranteed to

arrive in the order in which they are sent but they may complete at any time. The only

guarantee is that when message m2 is being processed, m1 must be in the receive queue of

rank b. So the algorithm needs to make sure to discard out-of-date values.

When all ranks have terminated, the worker threads are idle and there are no in-flight

user messages. Because SHUTDOWN is sent last, all internal completion-related messages must

be present in the queue on the receiver, and it is then safe to exit by repeatedly calling

progress() on the communication thread on all ranks until all messages have been processed.

Since those completion-related messages correspond to times t < t̄, they can safely be

discarded.

Figure 3.8 shows the completion algorithm in pseudo-code.

We finally state the following two properties, correctness and completion in finite time.

Theorem 3.1 (Correctness). The SHUTDOWN message is sent if and only if completion has

been reached.

Proof. Assume first SHUTDOWN is sent as a response to a confirmation t̃. Denote t�a the time at

which COUNT is sent and t+a the time at which CONFIRMATION is sent. Because of the intervening

REQUEST, the synchronization time t̄ exists. All assumptions in Lemma 3.1 are satisfied,

hence the program has reached completion. Now assume we have reached completion at

time {t�a }a. Then all messages queued have been processed and all taskflows are idle. Hence

all ranks a > 0 will send their latest qa(t�a ) and pa(t+a ) with a COUNT to rank 0 and those

will be such that
P

a qa(t
�
a ) =

P
a pa(t

+
a ). Rank 0 will reply with a REQUEST with time t̃,

and since we have completed, the counts will no longer change and rank 0 will receive

CONFIRMATION with matching times t̃. Rank 0 will then send SHUTDOWN messages and all ranks

must eventually terminate.

The second property guarantees that CONFIRMATION is sent in a finite time. For example, if

the number of messages is potentially unbounded, messages from some ranks could always

be prioritized, preventing any progress from other ranks, and the algorithm may never

terminate.

Theorem 3.2 (Finiteness). The completion protocol is guaranteed to send CONFIRMATION in

a finite time.
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Figure 3.8: Completion algorithm
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Proof. Denote n the total number of user messages sent and received. That number is

finite assuming the user code is correct, e.g., there is no hidden infinite loop. We prove that

the completion algorithm requires sending no more than O(n) messages. Let’s consider each

step:

• COUNT: since the message count can only increase, at most 2n messages may be sent

(this is a pessimistic bound).

• REQUEST: since we only send a message when the count
P

a qa(t
�
a ) changes, we will

broadcast at most n messages.

• CONFIRMATION: the number of CONFIRMATION cannot exceed the number of REQUEST.

• SHUTDOWN: by construction, this message is sent exactly once.

Denote np the number of processes. The number of messages used in the completion protocol

is at most 2nnp + 1.

Assume that the user tasks as stalled because of missing data from other ranks. From

our assumption, we are guaranteed that all messages will eventually arrive. This ensures

that the user tasks will complete in finite-time. After that, the completion messages are

also guaranteed to complete in finite-time.

3.4 Benchmarks

In this section, we present benchmarks comparing TTor to OpenMP, StarPU, Regent, and

ScaLAPACK.

We start with micro-benchmarks against OpenMP and StarPU to validate the low over-

head of the shared memory component. This is only used to verify that the task-based

management overhead is comparable, and sometimes better, than other runtime systems.

We then apply TTor (with its distributed component) to three classical linear algebra

problems. In those sections, the goal is to compare a sequential enumeration of the DAG

(STF) as implemented in StarPU and Regent versus the PTG approach as implemented in

TTor. We note in particular that it is possible to modify the StarPU code such that the DAG

is parallelized in a manner close to TTor. Similarly, several optimizations in TTor are possible

but were not explored for this work (memory management, task insertion, communication).
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Therefore, these benchmarks cannot be interpreted as measuring the peak performance of

either runtime.

In particular, as we shall see, the results in Regent are very disappointing. Investigation

shows that good results would only be possible with a custom mapper, which is something

we did not pursue. As such, the Regent results should not be considered as representing

Regent’s peak performance.

In all cases, experiments are run on a cluster equipped with dual-sockets and 16 cores

Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz with 32GB of RAM per node. Intel Compiler

(icpc (ICC) 19.1.0.166 20191121) and Intel MPI are used with Intel MKL (version 2020.0.166)

for BLAS, LAPACK and ScaLAPACK. We use StarPU version 1.3.2 and Regent at commit

3418c32. We assign one MPI rank per node. TTor’s code, including benchmarks, is available

at github.com/leopoldcambier/tasktorrent. StarPU, Regent, and ScaLAPACK’s benchmarks

are available at github.com/leopoldcambier/tasktorrent_paper_benchmarks.

3.4.1 Micro-benchmarks

We first perform a series of micro-benchmarks to validate the low overhead of the shared

memory component of the runtime. In the following, we average timings across 25 runs. In

every case, the standard deviation was recorded as well, to estimate the variability of the

measurement. In most cases, it was negligible and we don’t report it. In all cases, we pick

a number of tasks so that the total runtime is about 1 second.

No-dependencies overhead

We begin with an estimation of the “serial” overhead of TTor’s shared memory runtime.

We start ntasks tasks, without any dependencies, and assign them in a round-robin fashion

to the nthreads threads. Each task is only spinning for spin_time seconds. As such, the total

ideal time is spin_time ⇥ ntasks / nthreads. Figure 3.9 shows the e�ciency as a function

of nthreads and spin_time. Given a total wall clock time of run_time, e�ciency is defined as

run_time ⇥ nthreads / (spin_time ⇥ ntasks). ntasks is chosen so that run_time is around 2

seconds.

Figure 3.9a shows results for TTor’s only, where we do not measure task insertion, i.e.,

we evaluate

for(int k = 0; k < n_tasks; k++) {

tf.fulfill_promise(k);
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}

tp.start (); // Start measuring time

tp.join (); // Stop measuring time

We see that the runtime has negligible impact for tasks ⇡ 100µs, and it becomes significant

around 1 µs where overhead dominates.

We then compare it to OpenMP and StarPU in Figure 3.9b where, to make the com-

parison fair, insertion time is measured (which reduces the maximum possible e�ciency, as

the insertion is sequential).

tp.start (); // Start measuring time

for(int k = 0; k < n_tasks; k++) {

tf.fulfill_promise(k);

}

tp.join (); // Stop measuring time

We note that this is a spurious consequence of creating tasks with no dependencies. In

practice the insertion is done by other tasks, themselves executing in parallel. We evaluate

StarPU both using “direct” task insertion (“Task”), as well as using the STF approach

(“STF”). In the STF approach, each independent task is associated with an artificial in-

dependent read-write piece of data. We see that for very small tasks < 10µs, overhead is

significant but comparable for all runtimes.

Many dependencies overhead

We then estimate the overhead when dependencies are involved. Consider a 2D array of

nrows ⇥ ncols tasks, with ndeps dependencies between task (i, j) and ((i + k)%nrows, j + 1)

for 0  k < ndeps. Again, tasks are spinning for spin_time seconds and, in TTor, task (i, j)

is assigned to thread i% nthreads.

Since this is not easily implementable in OpenMP, we only compare TTor with StarPU.

In the “Task” version, tasks are directly inserted, and their dependencies are explicitly

expressed. In the STF approach, we register data for every (i, j) task and that data is used

to create dependencies with the tasks in the next column. We note that StarPU STF has

the constraint that the number of input data bu↵ers for a given task should normally be

known at compile-time, which makes it not well-suited for this benchmark.

Figure 3.10 shows the results with nrows set to 32. We see that TTor is between StarPU

“Task” and StarPU “STF”, with similar overhead. This validates the implementation.
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Figure 3.9: Shared memory serial overhead, as a function of the number of threads nthreads

(x-axis) and the task time spin_time (various lines). The plots show the mean across 25
runs.
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We conclude that the overhead of TTor is comparable (and sometimes better) to OpenMP

and StarPU.

3.4.2 Distributed Matrix-matrix Product

We now consider a distributed matrix-matrix multiplication problem (GEMM), i.e., given

A,B 2 RN⇥N compute C = AB. We compare:

• TTor with an algorithm using a 2D block-cyclic mapping of blocks of size 256 to ranks,

using the default (“small”) and large AMs;

• TTor with an algorithm using a 3D mapping of blocks to ranks, tiled (every GEMM

is single-threaded, with a block size of 256) or not (every GEMM is a single large

multithreaded BLAS). We use the DNS algorithm (see Algorithm 3.1 and also for

instance [76]) to map blocks to ranks.

• StarPU (with STF semantics, i.e., all ranks explore the full DAG) using a 2D block-

cyclic mapping of blocks of size 256 to ranks. Various scheduling strategies have been

tried, without significant variation in runtime; the default local work-stealing lws is

then used.

• Regent, with a block size of 512 (which gives better results than 256), but without

any custom mapper.

• ScaLAPACK using a 2D block-cyclic mapping (with a block size of 256) with mul-

tithreaded BLAS. We note that ScaLAPACK is not a runtime and is not actively

managing a task graph.

The following code snippet shows the GEMM portion when using the 2D block-cyclic

data distribution. In this case, contributions AikBkj are ordered with k, i.e., AikBkj happens

before Ai(k+1)B(k+1)j . Furthermore, because of the 2D data distribution, the products

AikBkj are mapped to a rank function of (i, j) only and, as such, always happen on the

same node. The mapping of tasks to threads may be any deterministic function of ikj.

In practice, something as simple as ikj[0] % n_threads can be used without any visible

performance degradation. It is merely used to distribute task dependency management

evenly across threads. noalias() is from the linear algebra library Eigen.
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Algorithm 3.1 The DNS 3D Gemm algorithm. We divide the processors into a 3D grid
and refer to them as triplets (i, j, k). The matrices A, B and C are divided into blocks of
the same sizes.
1: procedure DNS(A,B) . Rank (i, j, 0) owns Aij and Bij

2: Rank (i, j, 0) sends Aij to rank (i, j, j)
3: Rank (i, j, 0) sends Aij to rank (i, j, i)
4: Rank (i, j, j) broadcasts Aij to rank (i, ⇤, j)
5: Rank (i, j, i) broadcasts Bij to rank (⇤, i, j)
6: Rank (i, j, k) computes C̃ijk = AikBkj , sends to rank (i, j, 0)
7: Rank (i, j, 0) accumualtes all C̃ijk into Cij

8: return Cij . Rank (i, j, 0) owns Cij

9: end procedure

gemm_Cikj.set_task ([&]( int3 ikj){
int i = ikj [0];
int k = ikj [1];
int j = ikj [2];
C_ij[i + j * num_blocks ]. noalias () +=

A_ij[i + k * num_blocks] *
B_ij[k + j * num_blocks ];

if(k < num_blocks -1) {
gemm_Cikj.fulfill_promise ({i,k+1,j});

}
}). set_indegree ([&]( int3 ikj) {

return (ikj [1] == 0 ? 2 : 3);
}). set_mapping ([&]( int3 ikj) {

return (ikj [0] / nprows + ikj [2] / npcols
* (num_blocks / nprows )) % n_threads;

});

Figure 3.11 presents strong and weak scalings results. Scalings are done multiplying the

number of rows and columns by 2 and/or the number of nodes by 8, and the largest test

cases are matrices of size 32 768. We make multiple observations:

• TTor benefits from the large messages (Figure 3.11c) over small ones, decreasing the

total time by up to 30%.

• TTor with large messages and StarPU using the 2D mapping have similar performance

(Figure 3.11c vs Figure 3.11e). TTor performs better than StarPU with small blocks

(Figure 3.11h).

• TTor with the 3D mapping and the tiled algorithm has better performance than with-

out (see Figure 3.11d as well as Figure 3.11a vs Figure 3.11b for results on 8 nodes).

This shows the importance of having a small task granularity, to increase the overlap
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between communications and computations. It has however similar performance to

the 2D mapping.

• Regent (Figure 3.11f) does not exhibit good performances. Profiling and discussion

with the library authors indicate that the reason is the lack of a custom mapper,

which is something complex to write as a user and that we did not pursue.

• Runtime-based (TTor and StarPU) implementations outperform ScaLAPACK (Fig-

ure 3.11g), showing the benefits of a task-based runtime system.

Figure 3.11h shows the impact of the block size on the runtime. We see that TTor is about

2.5x faster than StarPU at small sizes. This highlights the advantages of a distributed

DAG exploration. We note that in this case, small blocks are not optimal. However,

GEMM is in some sense an “easy” benchmark since it o↵ers a large amount of concurrency.

Therefore, to stress the runtimes and observe measurable di↵erences we need to deviate from

the optimal GEMM settings. Although we could not investigate other algorithms for this

chapter, more complex applications would probably reveal additional di↵erences between

TTor and StarPU. This is particularly important in less regular computations where the

task granularity is harder to control (for instance in more complex scientific codes) or varies

significantly.

Finally, Figure 3.11i shows the e�ciency of TTor (2D GEMM) as a function of the

concurrency. Since the GEMMs are sequential as a function of k, num_blocks^2/n_cores

indicates how much parallelism is available per core. This represents the number of blocks

that are processed on each core between communication steps. We see that e�ciency

decreases sharply at around 16 blocks per core.

3.4.3 Distributed dense Cholesky factorization

We now consider an implementation of the Cholesky algorithm, i.e., given a symmetric

positive definite matrix A 2 RN⇥N , compute L such that A = LL>. In its sequential and

blocked form, the algorithm is described in Algorithm 3.2.

The algorithm is made of three main computational routines: potrf(k), trsm(i, k) and

gemm(k, i, j) (in practice syrk when i = j). We show a PTG formulation of Algorithm 3.2

in Figure 3.12. Large active messages are used.

We compare TTor, StarPU (with STF semantics), Regent, and ScaLAPACK. A 2D

block-cyclic data distribution is used with a block size of 256, except in Regent where the
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(d) TTor 3D GEMM. Red = non-
tiled, blue = tiled.
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(e) StarPU 2D GEMM.
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(f) Regent 2D GEMM (block size
512, default mapper).

16 128 1024

100

101

8k

16k
32k 64k

Cores (16 per node)

T
im

e
[s
ec
.]

(g) ScaLAPACK GEMM.
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Figure 3.11: GEMM scalings. (a-b): impact of task granularity on 3D GEMM. Smaller tasks
give a higher overlap of computation and communication. (c-g): weak (dotted) and strong
(dashed) scalings. Numbers indicate the matrix size N . Largest test case is N = 65 536.
(h): optimal block size (i.e., task granularity) for the N = 32 768 test case. The extra
data point shows the improvement when using small AMs instead of large AMs on small
block sizes. The decrease in the number of messages sent improves the runtime by 3x. (i):
e�ciency as a function of concurrency for N = 16 384. Reference timing is with 1 core.
Figure and data from Yizhou Qian.
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Algorithm 3.2 Block Cholesky algorithm

1: procedure Cholesky(A, n) . A � 0, n⇥ n blocks
2: for 1  k  n do
3: LkkL>

kk = Akk . potrf(k)
4: for k + 1  i  n do
5: Lik = AikL

�>

kk . trsm(i, k)
6: for k + 1  j  i do
7: Aij  Aij � LikL>

jk . gemm(k, i, j)
8: end for
9: end for

10: end for
11: end procedure

potrf(j)

gemm(j-1,j,j)

trsm(j+1,j) trsm(N,j)
. . .

(a) potrf(j)

trsm(i,j)

potrf(j) if(j > 0) gemm(j-1,i,j)

gemm(j,i,j+1) gemm(j,N,i)
. . .

(b) trsm(i,j)

gemm(k,i,j)

if(i==j) potrf(j)
else trsm(i,k), trsm(j,k)

if(k > 0) gemm(k-1,i,j)

if(k<j-1) gemm(k+1,i,j)
else if(i==j) potrf(j)
else trsm(i,j)

(c) gemm(k,i,j)

Figure 3.12: PTG description of Algorithm 3.2. In TTor, when out-dependencies are remote,
an AM is sent to the remote rank, carrying the associated block and triggering remote tasks.
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block size is 512 and no custom mapper is used. Task priorities in TTor are computed

using [14]. As before, in ScaLAPACK the block size is related to the data distribution but

there are no tasks per se.

Weak and strong scalings are performed by multiplying the number of rows and columns

by 2 or the number of cores by 8. The larger test case is a matrix of size N = 131 072.

Figure 3.13 shows the results.

We see that on large problems, both TTor and StarPU reach very similar performances,

both outperforming ScaLAPACK by far: for N = 131 072 on 1024 cores, ScaLAPACK

takes more than 125 secs (not shown). On the N = 131 072 test case, TTor and StarPU

di↵er by less than 10%. StarPU shows better strong scaling for small problems on many

nodes. We conjecture that this may be due to a better task scheduler, memory management

(thread-memory a�nity), and mapping of the computation across nodes. Regent, on the

other hand, while scaling on 1 node, does not reach good performances beyond that. We

conjecture that the lack of a custom mapper prevents proper scaling, as the matrix is not

well distributed across ranks.

Figure 3.13e shows the runtime as a function of the block size for a test case of size

65 536 ⇥ 65 536 on 64 nodes (1024 CPUs). We see that 256 gives the best results for both

TTor and StarPU. Furthermore, we observe that for small task size, TTor degrades less

quickly than StarPU. The small block size leads to many tasks and unrolling the DAG on

one node becomes prohibitive, even for reasonably large tasks (block size of 128). For a block

size of 64, TTor is about 10x faster. Thanks to its lightweight runtime and distributed DAG

exploration, TTor su↵ers less from the small task size. For large task sizes, both degrade

similarly. The poor performance at large sizes is caused by a lack of concurrency.

Figure 3.13f shows a load balancing test using random block sizes with a fixed number

of blocks. ⇢ is the ratio of the largest over the average block size. For ⇢ = 1.5, the ratio

of flops from smallest to largest task is (1.5/0.5)3 = 27. We see that TTor handles tasks of

various granularity very well, with less than 25% degradation from ⇢ = 1 to ⇢ = 2 for an

average block size of 256.

3.4.4 Sparse Cholesky

As a final application, we consider a sparse Cholesky algorithm. We use Scotch [46]’s

algebraic nested dissection ordering and a 1D mapping of columns to ranks. We perform a

strong scaling only, with an average block size of 256 (Scotch leads to some blocks having
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(f) Load balancing test with random
block sizes.

Figure 3.13: Cholesky scalings. (a-d): weak (dotted) and strong (dashed) scalings. Num-
bers indicate the matrix size N . Largest (top right) test case is N = 131 072. (e):
optimal block size (i.e., task granularity) for the N = 65 536 test case. (f): load bal-
ancing test using random block sizes for the N = 65 536 test case with 1024 CPUs.
Block sizes are random uniform on ((2 � ⇢)b, ⇢b) with b the maximum block size and
⇢ = max_block_size/average_block_size. Numbers indicate the average block size.
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Figure 3.14: Sparse Cholesky. Weak and strong scalings over a 7-points stencil matrix. The
legend indicates the matrix size.

larger and smaller sizes). The matrix corresponds to a 7-points stencil over a 3D cube.

Figure 3.14 presents the factorization time as a function of the total number of cores, for

various matrix sizes, indicated as N = n3. We see that for large enough sizes, TTor strong

scales very well. For instance, for N = 1283 ⇡ 2M , the total factorization time goes from

about 1000 seconds down to about 10 seconds.

At the moment, the code performs the ordering on a single node and runs out of memory

on large problems. We note that an algorithm such as sparse Cholesky is very sensible to

the block size, the ordering, the clustering within separators, and other factors. Those

questions are however outside the scope of this chapter and, as such, we do not compare

TTor with other sparse direct solvers.

3.5 Conclusion

We presented TaskTorrent (TTor), a lightweight distributed task-based runtime system

in C++. It has a friendly API and relies on readily available tools (C++14 and MPI).

It enables shared-memory task-based parallelism coupled with one-sided active messages.

Those two concepts naturally work together to create a distributed task-based parallel

computing framework. We showed that TTor is competitive with both StarPU (a state of

the art runtime) and ScaLAPACK on large problems. Its lightweight nature allows it to

be more forgiving when task granularity is not optimal, which is key to integrating this

approach in legacy codes.



Chapter 4

Parallel Sparsified Nested

Dissection

4.1 Introduction

In this work, we consider the parallelization of the sparsified nested dissection (spaND) al-

gorithm. While spaND is a fast algorithm, parallelization is essential to run large problems.

In the following, we describe a distributed memory and task-based parallel version of spaND.

4.1.1 Previous work

Task-based algorithms have already been used in linear algebra. Since the years 2010, most

e↵orts have been focused on dense linear algebra algorithms (typically Cholesky, LU, and

QR factorizations). The PLASMA (for multicore CPUs) and MAGMA (for hybrid CPU

and GPU machines) projects [140, 3, 148] implement tiled task-based algorithms using a

dynamic scheduler. DPLASMA [27] extends PLASMA to distributed memory machines and

uses the PaRSEC runtime (closely related to the DAGuE compiler) [26]. More recently, the

related SLATE project [69] aims at replacing ScaLAPACK’s dense linear algebra algorithms

with task-based algorithms. In [97] the authors introduced FLAME and the SuperMatrix

data structure, to e�ciently map dense linear algebra operations on heterogeneous systems.

Task-based parallelism has also been used in sparse direct solvers. In [102], the authors

point out that DAG scheduling of sparse algorithms is challenging because of the large

number of small and irregular tasks. Tasks are first created, by traversing the elimination

93
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tree and using block algorithms. The algorithm only then executes tasks asynchronously

using the previously computed dependencies. In [103] the authors integrated StarPU [11]

and PaRSEC [26] in the PaStiX [90] sparse direct solver. Using a generic task-based runtime

system led to similar performance compared to the original specialized scheduler used in

PaStiX, with the additional benefit of leveraging accelerators such as GPUs. The authors

in [1, 2] study the use of a hybrid (CPU+GPU) STF task-based runtime system for a

sparse QR algorithm, where task granularity has to be large enough to saturate the GPU,

but small enough to exhibit enough parallelism. In [5] the authors took an MPI+task

approach. Instead of expressing the entire DAG with PaRSEC or StarPU, only the local

DAG is provided to a runtime system. This is well-suited to hybrid CPU+GPU machines,

where each subdomain (owned by one MPI rank) is assigned to a heterogeneous machine.

Each domain can then be scheduled on the multicore CPU, possibly extended by accelerators

such as GPUs.

Regarding spaND, to the best of our knowledge, the only distributed memory imple-

mentation of a spaND-like algorithm can be found in [106] where the authors consider a

distributed HIF [95]. That work resembles ours. HIF is similar to spaND, but is restricted

to 7-points stencils on regular 2D or 3D meshes, and use interpolative factorization. We

consider a more general setting (spaND works on any sparse matrix), use a task-based

approach, and we use a di↵erent algorithm using orthogonal transformations.

However, unlike in [106], we do not use distributed RRQR’s to parallelize the large low-

rank factorizations arising at the top of the tree. spaND is an O(N logN) algorithm when

used over matrices coming from the discretization of 3D PDEs. This indicates that every

level in the algorithm has a similar O(N) complexity. However, while the leaves exhibit

a lot of concurrency, the top levels only have a few large interfaces. In our approach, we

associate each task with an interface. As such, concurrency is limited when the sparsified

interfaces are large, as it is typically the case on large problems coming from 3D PDEs. As

such, we will focus on applications coming from 2D PDEs when the matrix size is very large.

In this case, the top separator size grows slowly with N and the algorithm is expected to

have an O(N) complexity. Hence, a task-based approach should scale well. This is what

we indeed observe.
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4.1.2 Contributions

In this work, we build a task-based algorithm for a fast sparse linear solver, spaND. To

the best of our knowledge, this is the first task-based approach to a fast sparse solver. We

perform the following.

• We describe a parallel ordering and clustering algorithm for spaND, that only relies

on the graph of A (Section 4.2.1);

• We design a sparsification method such that all interfaces can be sparsified simulta-

neously, and rigorously prove that it has the same error as the original method in

Chapter 2 (Section 4.2.2);

• We describe the resulting DAG, and how to express it using TTor (Section 4.2.3);

• We run the resulting algorithm on large problems, with matrix sizes up to 300M and

using more than 9000 cores (Section 4.3), and show that it performs well compared

to other state-of-the-art fast solvers such as Hypre’s Boomer AMG.

• We discuss the use of TTor for such an algorithm, its benefits, and its limitations.

4.2 Task-based parallel spaND

4.2.1 Parallel partitioning and ordering

We now describe the algorithm used to define separators, interfaces (a clustering of the

vertices within separators), and to distribute the matrix across MPI ranks1. In the following,

the notation // denotes the integer division (i.e., i//j = floor(i/j)).

The algorithm is based on a recursive bisection (a partitioning) of the graph of A and

proceeds in three steps. Let L > 0 be the number of desired levels and P = 2k (k � 0)

the number of MPI ranks. In the following, we say that a set 1, . . . , N is distributed based

on a map i ! pi with 0  pi < ⇢ over P ranks if rank 0  p < P owns i such that

pi 2 [pK, (p+ 1)K � 1] with K = (⇢+ P � 1)//P .

Given L > 0, we consider a binary tree of separators as shown in Figure 4.1a. We denote

a separator by (`, s) where 0  ` < L is the level (with 0 for the leaves and L � 1 for the

top) and 0  s < 2L�`�1.

1In this work, we use the term rank for the ranks resulting from the low-rank approximations, and MPI
rank for a processor’s position within a MPI communicator.
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For s, t two separators, top(s, t) is defined as the separator r on the path s ! t the

closest to the root (L� 1, 0). If t = none, then top(s, t) returns s. For a separator t = (`, s)

we also define level(t) = `. Finally, let Ni = {j|Aij 6= 0, j 6= i} be the neighborhood of

vertex i in A.

The algorithm to build separators, interfaces, and to partition the matrix is the following.

• A recursive bisection of A is computed, assigning to every vertex i a partition pi,

0  pi < 2L�1. The dissection is recursive, meaning the map i ! pi//2` defines the

partitioning at level `. This can be done entirely algebraically or using geometrical

information. In practice, if geometry information is available, it is preferable to use

it. The matrix is then distributed based on this i ! pi partitioning. Edges in the

matrix are distributed using a 1D (block-) column partitioning: Aij is mapped to the

MPI rank of vertex j.

• Separators are computed, assigning to each vertex i a 2-tuple (`, s) with ` the level

in the ND tree and s the separator. Informally, vertices on the left of a partition but

adjacent to the right partition will form a separator. The algorithm proceeds level

by level, computing first the level L � 1 separator (the top). It then communicates

that information (using a halo exchange) and then proceeds with level L � 2, etc.,

until level 0. This is necessary since higher-level separator information is required to

compute lower level separators.

• Interfaces are computed by assigning to each vertex i a tuple (sl, sr) where sl is the

highest separator on its left and sr is the highest separator on its right. The highest

separator on the left is defined by repeatedly applying top between sl (initialized to

(0, pi)) and all the left neighbors of i. Similarly, the highest separator on the right

is defined by repeatedly applying top between sr (initialized to none) and all the

right neighbors of i (which, by construction, form a non-empty set). This step can be

done in one pass over the data as it only depends on previously computed separator

information.

The complete algorithm is available in Algorithm 4.1 and illustrated on Figure 4.1.

Each MPI rank only holds the piece of s and c carrying local and adjacent (halo) nodes

information.

The output of Algorithm 4.1 is a mapping from vertices to a 5-tuples of integers and
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Algorithm 4.1 Partitioning algorithm. “Halo update” means communicating updated
p, s, c to neighboring MPI ranks to update their halo values, and vice-versa.

Require: A symmetric, distributed, L > 0, P > 2L�1 a power of 2
Ensure: 0  pi < 2L�1

Ensure: si = (`, s) with 0  ` < L, 0  s  2L�`�1

Ensure: ci = (sl, sr) are separators on the left and right of i
p RB(A, 2L�1) . Recursively partition A in 2L�1 pieces
Distribute A, send vertex i to MPI rank pi/(2L�1/P ).
for i local do

si  (0, pi)
end for
Halo update(A, p, s, c)
for ` = L� 1, . . . , 1 do . Create top to bottom separators

for i local do
p0i  pi//2` . Partitioning at level `
if p0i%2 = 0 then . If on the left...

for j 2 Ni do
p0j  pj//2` . Partitioning at level `
if p0j = p0i + 1 then . But touches the right...

si  (l, p0i//2) . Set separator
Break

end if
end for

end if
end for
Halo update(A, p, s, c)

end for
for i local do . Create interfaces

if level(si) > 0 then . If not a leaf
sl, sr, p0i  (0, pi), none, pi//2level(si)

for j 2 Nj do
if level(sj) < level(si) then

p0j  pj//2level(sj)

if p0j < p0i then
sl  top(sj , sl)

else
sr  top(sj , sr)

end if
end if

end for
ci  (sl, sr)

else
ci  ((0, pi), (0, pi))

end if
end for
Halo update(A,p,s,c)
return p the partitioning, s the ordering, c the interfaces clustering
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partition

separator

⌘ 0 ⌘ 1 ⌘ 2 ⌘ 3

(2, 0)

(1, 0) (1, 1)

(0, 0) (0, 1) (0, 2) (0, 3)

(a) Nested Dissection ordering binary tree for L = 3

0

1

2

3

(b) Recursive bisection. The ma-
trix is distributed across MPI
ranks using a 1D column parti-
tioning based on the RB.

(2, 0)

(1, 0) (1, 1)

(c) Separators creation. Separa-
tors are vertices in the left par-
tition adjacent to the right parti-
tion.

(d) Interfaces definition. Inter-
faces are built by clustering ver-
tices within separators based on
the (p, sl, sr) tuple where p is the
partition, sl is the left separator
and sr is the right separator.

Figure 4.1: Partitioning algorithm
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separators

map : i! map(i) = (pi, s, sl, sr, 0)

defining interfaces at level 0. pi is the partition of vertex i at level 0, s its ND separator,

sl and sr its left and right ND separators neighbors, and 0 indicate this is the partitioning

at the very first level. Vertices i, j such that map(i) = map(j) are then clustered together

and form an interface. Note that interfaces, by construction, belong to the same partition

and, as such, to the same MPI rank.

From level ` to level `+1, merging is done by following the RB and ND trees up towards

the root. Formally, a non-eliminated interface � = (pi, s, sl, sr, `) (i.e., s is not a leaf in the

ND tree at level `) is transformed into its parent interface  = parent(�) using this map

�! parent(�) : (pi, s, sl, sr, `)! (pi//2, s, up(sl, `), up(sr, `), `+ 1)

where

up(s, `) =

(
parent(s) if s is an ND leaf at level `

s otherwise

and where parent(s) is the parent of s in the ND binary tree. Di↵erent interfaces �,�0

with the same parent  are then merged together to form an interface at the next level.

Interfaces are then distributed across MPI ranks based on their partition.

Notice that

• By construction, an interface is always entirely contained in a partition and, as such,

is resident on a given MPI rank.

• In the above formula, the ND separator s never changes.

We re-emphasize that, in this algorithm, the load balancing (i.e., which interface is

mapped to which MPI rank) is purely based on the recursive bisection of A. In particular,

this assumes that interface ranks are uniform across the domain. From experience, this

is usually the case on elliptic PDEs. However, if this is not the case, this load balancing

strategy may be far from the optimum.

4.2.2 Parallel sparsification

Sparsification is the central part of spaND. In this section, we describe a parallel version of

sparsification. Let us consider a particular level, and assume that eliminations and block
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scalings have all been performed. What is left to do is to sparsify all interfaces.

Let us denote the remaining interfaces by s1, s2, . . . , sk. We also denote by n1, . . . , nk

their respective complement (i.e., if I, |I| = n, denote all the remaining dofs, ni [ si = I,

ni \ si = ;). At a given step of the algorithm, the trailing matrix is

A =

2

666664

As1s1 As1s2 . . . As1sk

As1s2 As2s2 . . . As2sk
...

...
. . .

...

Asks1 Asks2 . . . Asksk

3

777775
2 Rn⇥n.

In practice note that most blocks in this matrix are e↵ectively zero and Asisi = I. However,

those do not a↵ect the following analysis.

Regular sparsification algorithm Now consider sparsification following the order s1 !
s2 ! · · ·! sk (see Algorithm 4.2). Starting from A0 := A, we consider sparsifying s1. This

means computing a rank-revealing factorization such that

h
A0,s1n1

A>
0,n1s1

i
= Q1

h
Ws1n1

W>
n1s1

i
=
h
Qf

1 Qc
1

i "W f
s1n1

W f,>
n1s1

W c
s1n1

W c,>
n1s1

#

with
���Qf,>

i

h
A0,sini A>

0,nisi

i���
F

=
���
h
W f

s1n1
W f

n1s1

i���
F
 ". Note the Frobenius norm, as

this simplifies some derivations. Similar results, with di↵erent constants, can be obtained

in the 2-norm. Rows W f
s1n1

and columns W f
n1s1 are then set to zero, leading to

A1 :=

2

666666664

Qf,>
1 As1s1Q

f
1 Qf,>

1 As1s1Q
c
1

Qc,>
1 As1s1Q

f
1 Qc,>

1 As1s1Q
c
1 W c

s1s2 . . . W c
s2sk

W c
s2s1 A0,s2s2 A0,s2sk
...

. . .

W c
sks1 A0,sks2 A0,sksk

3

777777775

.

With U1 =

"
Q1

I

#
orthogonal we have kU>

1 A0U1�A1kF =
���
h
W f

s1n1
W f,>

n1s1

i���
F
 ". The

algorithm then proceeds with s2, ..., sk. At every step, we build Qi =
h
Qf

i Qc
i

i
such that

���Qf,>
i

h
Ai�1,sini A>

i�1,nisi

i���
F
 ". Defining Ui as a k� diagonal block matrix with ones on
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the diagonal, except for its ith diagonal block equal to Qi, we then have kU>

i Ai�1Ui�AikF 
". Now assume that kU>

i · · ·U>
1 A0U1 · · ·Ui � AikF  i" and kU>

i+1AiUi+1 � Ai+1kF  ".

We then have

kU>

i+1 · · ·U>

1 A0U1 · · ·Ui+1 �Ai+1kF
= kU>

i+1(U
>

i · · ·U>

1 A0U1 · · ·Ui �Ai +Ai)Ui+1 �Ai+1kF
 kU>

i+1(U
>

i · · ·U>

1 A0U1 · · ·Ui �Ai)Ui+1kF + kU>

i+1AiUi+1 �Ai+1kF
= kU>

i · · ·U>

1 A0U1 · · ·Ui �AikF + kU>

i+1AiUi+1 �Ai+1kF
 (i+ 1)"

using the invariance of the Frobenius norm to square orthogonal transformations and the

triangle inequality. Let eA := Ak be the final sparsified matrix. We conclude that

kU>

k · · ·U>

1 AU1 · · ·Uk � eAkF  k".

Algorithm 4.2 Sequential sparsification algorithm. Qi is computed based on Ai�1 and
drop fine drops entries corresponding to fine degrees of freedom

A0  A
for i = 1, . . . , k do

Sparsify si, i.e., compute Qi such that

kQf,>
i

⇥
Ai�1,sini A>

i�1,nisi

⇤
kF  "

Ai  drop fine(U>
i Ai�1Ui)

end for

Simultaneous sparsification algorithm We now consider an alternative algorithm (see

Algorithm 4.3). Instead of sparsifying s1 ! s2 ! · · ·! sk, we sparsify all si (1  i  k) at

the same time, given the original A. This means that for all i, we simultaneously compute

Qi =
h
Qf

i Qc
i

i
such that

���Qf,>
i

h
Asini A>

nisi

i���
F
 ". Define Ui as a k�diagonal block ma-

trix with Qi in its ith position and ones otherwise. Then consider A = U>

k · · ·U>
1 AU1 · · ·Uk

and eA defined as

eAsisj =

"
0 0

0 Qc,>
i AsisjQ

c
j

#
if i 6= j and eAsisi = Asisi otherwise.
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In short, o↵-diagonal block rows and columns corresponding to fine degrees of freedom are

zeroed-out compared to A, with the rest unchanged. We then find

kA� eAk2F =
X

i 6=j

�����

"
Qf,>

i AsisjQ
f
j Qf,>

i AsisjQ
c
j

Qc,>
i AsisjQ

f
j 0

#�����

2

F

(4.1)


X

i 6=j

���
h
Qf,>

i AsisjQ
f
j Qf,>

i AsisjQ
c
j

i���
2

F
+
X

i 6=j

�����

"
Qf,>

i AsisjQ
f
j

Qc,>
i AsisjQ

f
j

#�����

2

F

(4.2)

=
X

i 6=j

���Qf,>
i Asisj

���
2

F
+
X

i 6=j

���AsisjQ
f
j

���
2

F
(4.3)

=
X

i 6=j

���Qf,>
i Asisj

���
2

F
+
X

i 6=j

���AsjsiQ
f
i

���
2

F
(4.4)

=
X

i 6=j

���Qf,>
i Asisj

���
2

F
+
X

i 6=j

���Qf,>
i A>

sjsi

���
2

F
(4.5)

=
X

i

X

j 6=i

✓���Qf,>
i Asisj

���
2

F
+
���Qf,>

i A>

sjsi

���
2

F

◆
(4.6)

=
X

i

✓���Qf,>
i Asini

���
2

F
+
���Qf,>

i A>

nisi

���
2

F

◆
(4.7)

=
X

i

���Qf,>
i

h
Asini A>

nisi

i���
2

F
(4.8)

 k"2 (4.9)

(4.1) is by construction of eA and A. (4.2) is by property of the Frobenius norm, and the

inequality is (possibly) loose since
���Qf,>

i AsisjQ
f
f

���
2
is counted twice. (4.3) is by invariance

of the Frobenius norm to square orthogonal matrices, (4.4) follows by interchanging the role

of i and j, and (4.5) is by invariance to the Frobenius norm to the transpose. (4.6), (4.7)

and (4.8) are by reordering and definition of ni. Finally, (4.9) follows by construction of

Qf
i . We conclude that

kU>

k · · ·U>

1 AU1 · · ·Uk � eAkF 
p
k".

We see that both approaches, Algorithm 4.2 and Algorithm 4.3, have a similar bound on

the sparsification error. Namely, both approaches implicitly compute an orthogonal matrix

U such that, if sparsification is done with tolerance ", and if eA is the final matrix without
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Algorithm 4.3 Simultaneous sparsification algorithm. Qi is computed based on A, for all
i. drop fine drops entries corresponding to fine degrees of freedom.

for i = 1, . . . , k do
Sparsify si, i.e., compute Qi such that

kQf,>
i

⇥
Asini A>

nisi

⇤
kF  "

end for
Compute A U>

k · · ·U>
1 AU1 · · ·Uk

Compute eA drop fine(A)

the fine edges, kU>AU � eAkF = O(") (note that the constant is smaller for Algorithm 4.3).

Because transformations are orthogonal, there is no loss of accuracy by sparsifying all

clusters at the same time. Other approaches, such as those using interpolative factorization

[95, 106], don’t use orthogonal transformations. As such, they don’t benefit from this

property.

But Algorithm 4.3 has a significant advantage: all sparsifications can happen in parallel.

For Algorithm 4.2 to be parallel, one would have to compute a 1-coloring on the graph of

A, mapping every interface i to a color ci so that no two neighboring interfaces have the

same color. Sparsification would then have to be ordered by color, i.e., si is sparsified

before sj if and only if ci < cj . This is similar to what is done in the parallel version of

LoRaSp, see [43]. As a result, we decided to use Algorithm 4.3 to maximize concurrency.

We note that Algorithm 4.3 has a slightly increased flop count. For neighboring clusters i,

j such that i would have been sparsified before j, the sparsification of sj does not benefit

from the reduced size of si. However, given the added concurrency and the simplicity (no

coloring needed) of the simultaneous sparsification algorithm, this is the approach taken in

this work.

4.2.3 Task-Based Algorithm using TaskTorrent

We now turn to the description of the algorithm. The algorithm is nearly identical to the

sequential version except that:

• partitioning is done as explained in Section 4.2.1;

• sparsification is done using the simultaneous version as described in Section 4.2.2;

We then implement this using TTor and a PTG approach. We parallelize each level
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Interiors Interfaces
i ⇥ ⇥

j ⇥ ⇥
. . .

⇥ p ⇥
⇥ ⇥ ⇥ q ⇥

⇥ ⇥ . . .

Figure 4.2: Example matrix

independently from each other. This means there is a synchronization point between each

level, and in the following, we consider a specific level in the algorithm.

Using a PTG approach requires identifying tasks and all their dependencies. Consider

a trailing matrix at a given level as illustrated in Figure 4.2. i and j are leaves (interiors)

and p and q are interfaces (i.e., subsets of the remaining separators). ⇥ represent non-zero

blocks in the matrix.

We create tasks by transforming every block matrix operation into a task:

• Elimination of an interior creates three di↵erent types of tasks: pivot factorization

(getrf), panel update (trsm) and Schur complement updates (gemm);

• Block scaling of an interface creates two types of tasks: pivot factorization (getrf)

and panel update (trsm);

• Sparsification of an interface creates two types of tasks: rank-revealing factorization

(geqp3), i.e., compute Qi, and trailing matrix update (ormqr), i.e., updating Aij  
Qc,>

i AijQc
j .

Dependencies depend directly on the input and output of tasks. For instance, geqp3

requires as input the blocks located in the row and column of the associated diagonal block.

Its output, Qi, is then needed for the ormqr associated with every block in its row and

column.

Figure 4.3 illustrates the PTG formulation for the elimination, Figure 4.4 for the scaling,

and Figure 4.5 for the sparsification. Every table shows the factorization (top), the local

PTG (middle), and an illustration of the dependencies in terms of the trailing matrix

(bottom).
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Pivot Panel Fill-ins

Aii = LiiUii Api  ApiU
�1
ii Apq  ApiAiq

Aip  L�1
ii Aip

getrf(i)

trsm(i,*) trsm(*,i)

trsm(p,i)

getrf(i)

gemm(i,p,*)

or gemm(i,*,p)

gemm(i,p,q)

trsm(i,q) trsm(p,i)

getrf(p)

or trsm(p,q)

i

p

q

i

p

i

p

q

Figure 4.3: Task-based elimination. LiiUii represents a generic factorization where Lii and
Uii can both be quickly inverted (Cholesky, partial pivoted LU, etc.). The gemm(i,p,q)

tasks can happen in any order but are bound to a specific thread to prevent race conditions.

Pivot Panel

App = LppUpp Apq  L�1
pp ApqU�1

qq

App  Ipp

getrf(p)

gemm(*,p,p)

trsm(p,*) trsm(*,p)

geqp3(p)

trsm(p,q)

gemm(*,p,q)

getrf(p) getrf(q)

geqp3(p) geqp3(q)

p p

q

Figure 4.4: Task-based block scaling
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RRQR Compression

QppW =
⇥
Apn1

. . . A>
n1p . . .

⇤
Apq  Q>

pp,cApqQqq,c

Qpp =
⇥
Qpp,c Qpp,f

⇤

geqp3(p)

getrf(p)

trsm(*,p) trsm(p,*)

ormqr(*,p) ormqr(p,*) ormqr(p,q)

geqp3(p) geqp3(q)

p p

q

Figure 4.5: Task-based sparsification

Figure 4.6 shows a small section of the task DAG (arising in the Ice-Sheet benchmark, see

Section 4.3.2). We recall that the parallelization is level-wise. Hence, the DAG is relatively

shallow and wide, with a fixed depth of seven (three for elimination, two for block scaling,

and two for sparsification). Figure 4.7 shows all the tasks at all levels of the algorithm,

ordered from bottom levels (bottom) to top levels (top).

We finally present some of the TTor code regarding the geqp3 task flow (compare with

Figure 4.5). We recall the following.

• geqp3(p) requires, as inputs, the blocks Apn and Anp, for all neighbor n of p;

• geqp3(p) performs a low-rank approximation of
h
Apn1

. . . Apnk A>
n1p . . . A>

nkp

i
,

leading to an orthogonal tall-and-skinny Qc
p;

• geqp3(p) outputs Qc
p, which is the input of the tasks ormqr(p,n) and ormqr(n,p) for all

neighbor n of p.

Now assume Taskflow<int> geqp3 has been defined. We first express the number of incoming

dependencies for a given diagonal block k.

geqp3.set_indegree ([&]( int k) {
Cluster* self = get_cluster_local(k);
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getrf_21541

trsm_21541_21549trsm_21541_21550 trsm_21549_21541trsm_21550_21541 trsm_21551_21541

gemm_21541_21549_21550 gemm_21541_21549_21549gemm_21541_21550_21549gemm_21541_21550_21550 gemm_21541_21550_21551

trsm_21550_21548

getrf_21550

trsm_21550_21547trsm_21548_21547 trsm_21548_21545

getrf_21548 getrf_21547

trsm_21547_21550trsm_21547_21548

geqp3_21550geqp3_21548 geqp3_21547

ormqr_21544_21549ormqr_21549_21544ormqr_21545_21548 ormqr_21548_21545ormqr_21550_21547 ormqr_21547_21550

Elimination

Block scaling

Sparsification

Figure 4.6: Example of task DAG for the ice-sheet problem at a particular level. This shows
only a portion of the DAG, which expands further on the left and right.

Elimination (getrf, trsm, gemm)
Block scaling (getrf, trsm)

Sparsification (geqp3, ormqr)

Leaves

Top separator

Figure 4.7: Illustration of all the DAGs for the ice-sheet problem. From lower levels (bot-
tom) to top levels (top). Colors indicate the kind of task.
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return 1 + // Pivot
self ->edgesColNbrSparsification (). size() + // Trsm’s in column
self ->edgesRowNbrSparsification (). size (); // Trsm’s in row

});

Then, we provide a function to map task k to a thread.

geqp3.set_mapping ([&]( int p) {
return p % ttor_threads;

});

Then, we indicate the computational routine to perform when task k is ready.

geqp3.set_task ([&]( int p) {
this ->sparsify_adaptive_only_Q(p);

});

Finally, we provide the function used to fulfill dependencies. This is the most complex

part of using TTor. This function first collects all the neighboring MPI ranks and which

blocks Apn, Anp are resident on those MPI ranks. Then, it sends one active message per

neighboring MPI rank, fulfilling the dependencies of the ormqr task flow on those blocks

(p, n) and (n, p). Note that the implementation computes Qc
p both as a tall-and-skinny

orthogonal matrix (Q in the code), as well as a set of householder reflectors (referred to as

h and v in the code).

geqp3.set_fulfill ([&]( int p) {
Cluster* self = get_cluster_local(p);
// Collect a map rank -> tasks to fulfill
map <int ,vector <int2 >> ff;
for(auto erow: self ->edgesRowNbrSparsification ()) {

int dest = edge2rank(erow);
if(dest == my_rank) {

ormqr.fulfill_promise(erow);
} else ff[dest]. push_back(erow);

}
for(auto ecol: self ->edgesColNbrSparsification ()) {

int dest = edge2rank(ecol);
if(dest == my_rank) {

ormqr.fulfill_promise(ecol);
} else ff[dest]. push_back(ecol);

}
// Send to all neighbors
for(auto& r_ff: ff) {

int size = self ->get_v()->rows ();
int rank = self ->get_v()->cols ();
auto ff_view = view(&r_ff.second );
auto Q_view = view(self ->get_Q ());
auto v_view = view(self ->get_v ());
auto h_view = view(self ->get_h ());
geqp3_am ->send(r_ff.first , p, size , rank , ff_view ,
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Q_view , v_view , h_view );
}

});

This function requires the definition of the geqp3_am active message, which we finally provide.

This active message (1) stores Qc
p on the receiver and (2) fulfill the local ormqr tasks.

auto geqp3_am = comm.make_active_msg(
[&]( int &p, int& size , int& rank , ttor::view <EdgeGID >& ff,

ttor::view <double >& Q_data , ttor::view <double >& v_data ,
ttor::view <double >& h_data) {
GhostCluster* s = get_cluster(p);
GhostEdge* pp = get_pivot(p);
// Copy Q, v, h
s->set_Q(make_matrix(Q_data , size , rank ));
s->set_v(make_matrix(v_data , size , rank ));
s->set_h(make_vector(h_data , rank ));
// Make pivot identity
pp->make_pivot_identity(rank);
// Fulfill dependencies
for(auto& e: ff) {

ormqr.fulfill_promise(e);
}

});

This is the entirety of the code used to define the geqp3 task flow.

4.3 Numerical results

We now show some benchmarks of the proposed approach on large problems. The goal

of this section is to demonstrate that TTor’s approach scales well on sparse, fast block

algorithms.

We implemented parallel spaND in C++ using TaskTorrent [34]. We use Zoltan [22] for

algebraic and geometric recursive bisection. The SPE and Naca0012 benchmarks were run

on a Stanford HPC Center cluster equipped with dual-sockets and 16 cores Intel(R) Xeon(R)

CPUE5-2670 0 @2.60GHz with 32GB of RAM per node. Intel Compiler (version 19.1.0.166)

and Intel MPI are used with Intel MKL (version 2020.0) for BLAS and LAPACK. The

Naca0012 benchmark comes from the SU2 flow code [57], in which spaND was integrated.

The Ice-Sheet benchmarks were run on the LLNL Quartz machine. Each node has a dual-

socket 36 cores Intel(R) Xeon(R) E5-2695 v4 with 128 GB of RAM. GCC (version 8.1.0) is

used with OpenMPI (version 4.0.0) and Intel MKL (version 2020.0).
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Figure 4.8: SPE profile (elimination, scaling, and sparsification combined), strong scalings,
from 1 to 16 cores.

4.3.1 SPE

We start with the SPE benchmark [47]. This problem corresponds to the discretization of a

scalar elliptic PDE in 3D with a 7-points stencil over a regular cube. As such, top separators

are relatively large, with size ⇡ 1000 for problems of size 8M . In addition, those get larger

as the problem becomes larger. As such, we perform strong scalings on 1 node, using from

1 to 16 cores, on the problem of size 8M. We use " = 10�2, use L = 17, skip sparsification

for 4 levels and use Cholesky for block pivot factorization. In that case, the trailing matrix

provably remains SPD and spaND is guaranteed to never break down. Figure 4.8 shows the

time spent on each level with various numbers of cores (i.e., TTor’s threads).

Since this problem has a moderate size, most of the time is spent in the first few

sparsification levels. Hence, there is much concurrency available, and the algorithm strong

scales relatively well. Larger test cases would exhibit larger ranks near the top, with worst

strong scalings. Eventually, the top levels will start dominating.

4.3.2 Ice-Sheet

We continue with some results on an Ice-Sheet modeling problem. Those problems come

from the modeling of the movement of ice in Antarctica [145]. Stokes equations are used,

and a modeling assumption leads to a non-linear equation. The mesh is a vertically extruded

2D mesh. Finally, a Newton method is used, and we consider the matrices arising in the

fourth step. We consider a mesh with 10 vertical layers and with horizontal resolutions

from 16km (1M problem size) to 1km (296M problem size).
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spaND AMG (Hypre)
cores N tfact tapp tsolve tfact+tsolve nCG tfact+tsolve nCG

36 1M 6.2 0.14 0.9 7.1 6 15 427
144 4M 7.3 0.15 1.2 8.5 6 16 456
576 18M 8.9 0.15 1.6 10.5 7 22 527
2304 74M 9.8 0.17 1.9 11.7 8 29 627
9216 296M 13.2 0.21 3.7 16.9 12 39 623

Table 4.1: Ice-sheet results, weak scalings, from 36 to 9216 cores.

We perform weak scalings and compare spaND (using Cholesky for block scaling with

" = 10�2) with Hypre [59] with Boomer AMG. For AMG, the matrix is distributed using

ParMetis [101] K-way and Boomer AMG uses a strong threshold of 0.9. For spaND we

bind 1 MPI rank per socket (with TTor using all cores through threads), while for Hypre,

we bind one MPI rank per core. Both use CG with a residual tolerance of 10�8. We use

from 36 to 9216 cores, with a matrix size from 1.1M to 296M. Table 4.1 shows the result.

We observe that the factorization time scales well, albeit with a small uptick in time for

the largest test case. The number of CG steps is also close to constant, only doubling from

the smallest to largest test case. Overall spaND is scaling similarly to Hypre and is more

competitive in terms of time-to-solution.

Figure 4.9 (top) shows the ranks across the physical domain at various levels. Our load

balancing heuristic assigns vertices to MPI ranks based on the initial partitioning of A. In

particular, it does not try to predict ranks, which are directly related to the number of flops.

However, in this problem, we observe that the ranks are very uniform. Strong localization

of some high ranks would lead to a poor load balancing.

Figure 4.10 shows the rank across levels for all problem sizes. We display both the

average and maximum ranks. As expected on 2D-like problems, we see that ranks grow

very slowly with the problem size. Average ranks show less than a 10% increase between

problems of size N and 4N . We however observe that the maximum ranks show large

values towards the leaves. Figure 4.9 (bottom) shows that this is due to imperfections in

the partitioning at the boundaries of the domain. However, this e↵ect is limited to the first

few levels and does not impact the overall runtime of the algorithm.



CHAPTER 4. PARALLEL SPARSIFIED NESTED DISSECTION 112

;
(a) Ranks, 16km case, ` = 4. Ranks from 22
to 350, average of 98

;
(b) Ranks, 16km case, ` = 8. Ranks from 1 to
291, average of 100

;
(c) Location of some of the high ranks, 8km
case, ` = 2 (after sparsification)

;
(d) Location of some of the high ranks, 8km
case, ` = 3 (before sparsification)

Figure 4.9: Ice-sheet ranks. (a-b): all ranks at various levels of the hierarchy. (c-d):
Location of a few high ranks.
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Figure 4.10: Ice-sheet ranks for all problem sizes. Averages (solid, diamond) and maximums
(dashed, circle).

4.3.3 NACA airfoil

We finish with a test problem from fluid dynamics. This is the classical NACA0012 test

case, with an airfoil at the center and a mesh stretching around. This is a classical, sim-

ple, benchmark used to evaluate flow solvers. The matrix comes from the implicit inviscid

DG discretization of the Navier-Stokes equations solved using Newton’s method and with

second-order elements. We use the freely-available SU2 [57] solver. The matrix is unsym-

metric but with a symmetric sparsity pattern and has a natural block structure, with blocks

of size 16⇥ 16 corresponding to each element, and connected to the adjacent four elements.

Finally, the mesh is regular (i.e., derived from a regular mesh) but highly non-uniform. As

such, we assign to each element a tuple (i, j) where i, j are integers increasing monotonically

with the radius and the angle, respectively. The matrix is then partitioned using those (i, j)

coordinates with a standard recursive bisection algorithm as described before. We consider

test cases with a matrix size from 250k to 67M , and perform again weak scalings. Fig-

ure 4.11 illustrates the solution of the PDE on the N = 4M test case, zooming over the

airfoil.

We then solve the linear systems using spaND with TTor. spaND and TTor have been

integrated into the SU2 solver. Because TTor is based on message passing with MPI,

integration into an existing MPI-based codebase is seamless. We use partial pivoted LU as
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(a) Density around the airfoil (b) Mach number around the airfoil

Figure 4.11: Naca solution for N = 4M .

block scaling algorithm, " = 10�3, and GMRES with a tolerance of 10�3 on the residual.

Figure 4.12 shows the ranks throughout the domain. This clearly shows a strong direc-

tionality, with ranks much higher ahead and behind the wing, but smaller above and below.

This presents challenges since, as a consequence, the load balancing is much less favorable.

Finally, Figure 4.13 presents all the results throughout all Newton iterations. We make

multiple observations:

• The average ranks grow slowly with the problem size. On the other hand, maximum

ranks grow quicker than expected, and are not localized to the leaves. This can slow

down spaND significantly since high ranks lead to longer sparsification time and high

ranks towards the top of the tree lead to poor concurrency.

• On the other hand, the number of GMRES steps remains very low at all problem sizes

and does not vary much during the Newton iteration.

• The factorization time scales well with the problem size, albeit with an increase in the

larger test case. We conjecture that the relatively high maximum ranks are degrading

performance.

• The solve time scales roughly like the number of GMRES steps, indicating that ap-

plying the preconditioner scales well with the problem size.

4.4 Benefits and limitations of the TTor approach

In this work, we parallelized spaND using TTor. This presents a couple of advantages but

has some limitations. We here discuss some of those.
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(a) ` = 4. Ranks from 40 (blue) to 296
(brown), average of 162

(b) ` = 6. Ranks from 47 (blue) to 353
(brown), average of 198

(c) ` = 6, zoom on the airfoil. (d) ` = 8. Ranks from 40 (blue) to 385
(brown), average of 231

Figure 4.12: Naca ranks at the last Newton step, step 25, with " = 0.001 for N = 4M and
various level ` with L = 13.
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Figure 4.13: Naca results, weak scalings, from 8 cores (1 node) for 250k to 2048 cores (128
nodes) for 67M. spaND using PLU, " = 10�3, and GMRES with 10�3 tolerance
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• The approach is well suited for (sparse) tiled matrix algorithms, where every block

operation generates a corresponding task in the DAG. This makes writing the PTG

code simple since there is a one-to-one mapping between tasks and block operations.

In this work, this is exactly what is done. Every block operation between interiors

and/or interfaces generates a task.

• The code is made simpler if all distributed data structures are entirely precomputed.

Tasks are then just filling (initially unallocated) dense blocks with the appropriate

values at runtime. Changing data structures at runtime risks introducing data races

that are di�cult to detect.

• Similarly, TTor is easy to use when dependencies are simple to compute. In spaND,

dependencies depend entirely on the matrix graph (in which there is an edge between

i and j if and only if block Aij is non-zero). As such, knowledge of neighbors is enough

to compute the in-degree of every task and to know what tasks to fulfill at the end of

a task.

• In the largest test cases studied, the DAG is very large near the leaves. In this case, the

PTG+AMs approach taken by TTor works well since the DAG is entirely distributed

and explored in parallel.

• Since TTor is based around message passing and MPI, it is fully compatible with any

MPI-based library. In this work, we integrated spaND into the SU2 [57] codebase

without any particular hurdle. It was equivalent to integrating a regular MPI-based

library. We were able to use TTor and spaND only in a portion of the code, before

returning control to SU2. This is important to enhance the adoption of task-based

runtime systems.

• TTor’s approach is based on message passing. This means every block in the matrix is

resident on a particular MPI rank. There is no built-in dynamic load balancing that

would migrate tasks and data across the system while computations are happening.

This may pose problems when the load is di�cult to predict (such as in the Naca0012

benchmark), and the runtime system does not provide a solution to this particular

issue (to the best of our knowledge, neither do Legion, Regent, or StarPU).

• TTor’s approach may be di�cult to use when there is no simple mapping between



CHAPTER 4. PARALLEL SPARSIFIED NESTED DISSECTION 118

tasks and block operations. We note that this is an issue in any task-based runtime

system.

On the other hand, TTor’s design makes it possible to interface with external MPI-

based libraries. In particular, any algorithm trying to address the issue of the large

ranks will require some form of distributed RRQR. The simplest way to achieve this

would be to use for instance ScaLAPACK, a classical MPI-based library. Since TTor

is based on MPI and C++, this is possible and relatively easy.

• Finally, TTor’s approach of PTG+AMs typically requires the DAG to encapsulate

everything. In particular, it is di�cult to compose functions and to create abstractions

without introducing synchronization. For instance, if one had a task-based distributed

RRQR library implemented with TTor, it may be di�cult to integrate that within the

spaND DAG while avoiding synchronization during the call to the library. A way

to compose functions using various DAGs would present a significant improvement.

This would also allow for easier testing of various parts of the algorithm independently

from each other. One way to do this would be by letting tasks on the first DAG fulfill

dependencies on arbitrary tasks in another DAG in a generic way, without knowing

precisely what that second DAG is.

4.5 Conclusions

In this work, we designed a task-based distributed version of the spaND algorithm using

TTor. We explained the implementation and performed both strong and weak scalings

experiments. Strong scalings exhibit good performances on problems of moderate sizes

where the top ranks are not too large. Weak scalings exhibit excellent performances on very

large problems where ranks grow slowly with N . This demonstrates the good performances

of a task-based approach using TTor, and show that TTor scales very well on large problems.

Future work should be centered around addressing the large ranks arising on large

3D problems. This is the main limitation of our approach at the moment. While this

is conceptually simple, it poses three practical issues. First, the partitioning needs to

encode that information (i.e., what MPI rank participates in which RRQR). Second, tasks

on various MPI ranks are usually independent in any task-based runtime system. The

implementation will need to take this into account, by having all MPI ranks start the

distributed RRQR together. Finally, the scaling of RRQR in a distributed setting is unclear.
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However, results such as [106] indicate that random-sampling based approaches exhibit good

performance.



Chapter 5

Skeletonized Interpolation

This chapter contains the full text of [33]. This work is © 2019 Society for Industrial and

Applied Mathematics. Reprinted, with permission. All rights reserved.

5.1 Introduction

In this work, we are interested in the low-rank approximation of kernel matrices, i.e., ma-

trices Kij defined as

Kij = K (xi, yj)

for xi 2 X = {x1, . . . , xm} ✓ X and yj 2 Y = {y1, . . . , yn} ✓ Y and where K is a smooth

function over X ⇥ Y. A typical example is when

K (x, y) =
1

kx� yk2

and X ⇢ X and Y ⇢ Y are two well-separated sets of points.

This kind of matrices arises naturally when considering integral equations like

a(x)u(x) +

Z

Ỹ

K (x, y)u(y)dy = f(x) 8x 2 X̃

where the discretization leads to a linear system of the form

aiui +
X

j

Kijuj = fi (5.1)

120
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where K is a dense matrix. While this linear system as a whole is usually not low-rank,

one can select subsets of points X ⇢ X and Y ⇢ Y such that K is smooth over X ⇥Y and

hence K (X,Y ) is low-rank. This corresponds to a submatrix of the complete K. Being able

to e�ciently compute a low-rank factorization of such submatrix would lead to significant

computational savings. By “smooth” we usually refer to a function with infinitely many

continuous derivatives over its domain. Such a function can be well approximated by its

interpolant at Chebyshev nodes for instance.

Low-rank factorization means that we seek a factorization of K = K (X,Y ) as

K = USV >

where U 2 Rm⇥r, V 2 Rn⇥r, S 2 Rr⇥r, and r is the rank. In that factorization, U and V

don’t necessarily have to be orthogonal. One way to compute such a factorization is to first

compute the matrix K at a cost O(mn) and then to perform some rank-revealing factor-

ization like SVD, rank-revealing QR or rank-revealing LU at a cost usually proportional to

O(mnr). But, even though the resulting factorization has a storage cost of O((m+ n)r),

linear in the size of X and Y , the cost would be proportional to O(mn), i.e., quadratic.

5.1.1 Notation

In the following, we will denote by K a function over X ⇥Y . X and Y are finite sequences

of vectors such that X ⇢ X and Y ⇢ Y and K (X,Y ) denotes the matrix Kij = K (xi, yj).

Small-case letters x and y denote arbitrary variables, while capital-case letters X, bX, qX,

eX denotes sequences of vectors. We denote matrices like A(X,Y ) when the rows refer to

the set X and the columns to the set Y . Table 5.1 summarizes all the symbols used in this

chapter.

5.1.2 Previous work

The problem of e�ciently solving (5.1) has been extensively studied in the past. As indicated

above, discretization often leads to a dense matrix Kij . Hence, traditional techniques such

as the LU factorization cannot be applied because of their O
�
n3
�
time and even O

�
n2
�

storage complexity. The now traditional method used to deal with such matrices is to

use the fact that they usually present a (hierarchically) low-rank structure, meaning we

can represent the matrix as a hierarchy of low-rank blocks. The Fast Multipole Method
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K The smooth kernel function
X ,Y The spaces over which K is defined, i.e., X ⇥ Y
x, y Variables, x 2 X , y 2 Y
X, Y The mesh of points over which to approximate K ,

i.e., X ⇥ Y
K The kernel matrix, K = K (X,Y ), Kij = K (xi, yj)
m, n m = |X|, n = |Y |
X, Y The tensor grids of Chebyshev points
bX, bY The subsets of X and Y output by the algorithm

used to build the low-rank approximation
qX, qY The complements of the above, i.e., qX = X \ bX,

qY = Y \ bY
m, n The number of Chebyshev tensor nodes, m = |X|,

n = |Y |
r0 The “interpolation” rank of K , i.e., r0 =

min(|X|, |Y |)
r1 The Skeletonized Interpolation rank of K , i.e., r1 =

| bX| = |bY |
r The rank of the continuous SVD of K
S(x,X), T (y, Y ) Row vectors of the Lagrange basis functions, based

on X and Y and evaluated at x and y, respectively.
Each column is one Lagrange basis function.

bS(x, bX), bT (y, bY ) Row vectors of Lagrange basis functions, based on
bX and bY , built using the Skeletonized Interpolation
and evaluated at x and y, respectively. Each column
is one function.

wk, wl Chebyshev integration weights
diag(WX), diag(W Y ) Diagonal matrices of integration weights when inte-

gration is done at nodes X and Y

diag(cWX), diag(cWY ) Subset of diag(WX) and diag(W Y ) corresponding to
rows and columns bX and bY

Table 5.1: Notations used in this chapter
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(FMM) [131, 79, 12] takes advantage of this fact to accelerate computations of matrix-vector

products Kv and one can then couple this with an iterative method. More recently, [65]

proposed a kernel-independent FMM based on interpolation of the kernel function.

Other techniques compute explicit low-rank factorization of blocks of the kernel matrix

through approximations of the kernel function. The Panel Clustering method [87] first

computes a low-rank approximation of K (x, y) as

K (x, y) ⇡
X

i

i(x; y0)�i(y)

by Taylor series and then uses it to build the low-rank factorization.

Bebendorf and Rjasanow proposed the Adaptive Cross Approximation [18], or ACA, as

a technique to e�ciently compute low-rank approximations of kernel matrices. ACA has the

advantage of only requiring to evaluate rows or columns of the matrix and provides a simple

yet very e↵ective solution for smooth kernel matrix approximations. However, it can have

convergence issues in some situations (see for instance [25]) if it cannot capture all necessary

information to properly build the low-rank basis and lacks convergence guarantees.

In the realm of analytic approximations, [163] (and similarly [24], [25], [65] and [153]

in the Fourier space) interpolate K (x, y) over X ⇥Y using classical interpolation methods

(for instance, polynomial interpolation at Chebyshev nodes in [65]), resulting in expressions

like

K (x, y) ⇡ S(x, eX)K ( eX, eY )T (y, eY )> =
X

k

X

l

Sk(x)K (x̃k, ỹl)Tl(y)

where S and T are Lagrange interpolation basis functions. Those expressions can be further

recompressed by performing a rank-revealing factorization on the node matrix K ( eX, eY ),

for instance using SVD [65] or ACA [25]. Furthermore, [163] takes the SVD of a scaled

K ( eX, eY ) matrix to further recompress the approximation and obtain an explicit expression

for ur and vr such that

K (x, y) ⇡
X

s

�sus(x)vs(y)

where {us}s and {vs}s are sequences of orthonormal functions in the usual L2 scalar product.

Bebendorf [15] builds a low-rank factorization of the form

K (x, y) = K (x, eY )K ( eX, eY )�1K ( eX, y) (5.2)



CHAPTER 5. SKELETONIZED INTERPOLATION 124

where the nodes eX and eY are interpolation nodes of an interpolation of K (x, y) built itera-

tively. Similarly, in their second version of the Hybrid cross approximation algorithm, Börm

and Grasedyck [25] propose applying ACA to the kernel matrix evaluated at interpolation

nodes to obtain pivots eXi, eYj , and implicitly build an approximation of the form given in

(5.2). Both those algorithms resemble our approach in that they compute pivots eX, eY in

some way and then use (5.2) to build the low-rank approximation. In contrast, our algo-

rithm uses weights and has stronger accuracy guarantees. We highlight those di↵erences in

Section 5.5.

Our method inserts itself amongst those low-rank kernel factorization techniques. How-

ever, with the notable exception of ACA, those methods often either rely on analytic expres-

sions for the kernel function (and are then limited to some specific ones), or have suboptimal

complexities, i.e., greater than O(nr). In addition, even though we use interpolation nodes,

it is worth noting that our method di↵ers from interpolation-based algorithms as we never

explicitly build the S(x, eX) and T (y, eY ) matrices containing the basis functions. We merely

rely on their existence.

H-matrices [83, 85, 82] are one way to deal with kernel matrices arising from bound-

ary integral equations that are Hierarchically Block Low-Rank. The compression crite-

rion (i.e., which blocks are compressed as low-rank and which are not) leads to di↵erent

methods, usually denoted as strongly-admissible (only compress well-separated boxes) or

weakly-admissible (compress adjacent boxes as well). In the realm of strongly-admissible

H-matrices, the technique of Ho & Ying [94] as well as Tyrtyshnikov [149] are of particular

interest to us. They use Skeletonization of the matrix to reduce storage and computation

cost. In [94], they combine Skeletonization and Sparsification to keep compressing blocks

of H-matrices. [149] uses a somewhat non-traditional Skeletonization technique to also

compress hierarchical kernel matrices.

Finally, extending the framework of low-rank compression, [50] uses tensor-train com-

pression to re-write K (X,Y ) as a tensor with one dimension per coordinate, i.e., K (x1, . . . ,

xd, y1, . . . , yd) and then compress it using the tensor-train model.
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5.1.3 Contribution

Overview of the method

In this work, we present a new algorithm that performs this low-rank factorization at a cost

proportional to O(m+ n). The main advantages of the method are as follows:

1. The complexity of our method is O(r(m+ n)) (in terms of kernel function K evalu-

ations) where r is the target rank.

2. The method is robust and accurate, irrespective of the distribution of points x and y.

3. We can prove both convergence and numerical stability of the resulting algorithm.

4. The method is very simple and relies on well-optimized BLAS3 (GEMM) and LA-

PACK (RRQR, LU) kernels.

Consider the problem of approximating K (x, y) over the mesh X ⇥ Y with X 2 X and

Y 2 Y. Given the matrix K (X,Y ), one possibility to build a low-rank factorization is to

do a rank-revealing LU. This would lead to the selection of

Xpiv ⇢ X, Ypiv ⇢ Y

called the “pivots”, and the low-rank factorization would then be given by

K (X,Y ) ⇡ K (X,Ypiv)K (Xpiv, Ypiv)
�1K (Xpiv, Y )

In practice, however, this method may become ine�cient as it requires assembling the

matrix K (X,Y ) first.

In this chapter, we propose and analyze a new method to select the “pivots” outside

of the sets X and Y . The key advantage is that this selection is independent of the sets

X and Y , hence the reduced complexity. Let us consider the case where X ,Y = [�1, 1]d.
We will keep this assumption throughout this work. Then, within [�1, 1]d, one can build

tensor grids of Chebyshev points X,Y and associated integration weights WX ,W Y and

then consider the matrix

Kw = diag(WX)1/2K (X,Y )diag(W Y )
1/2
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Denote r0 = min(|X|, |Y |). Based on interpolation properties, we will show that this matrix

is closely related to the continuous kernel K (x, y). In particular, they share a similar

spectrum. Then, we select the sets bX ⇢ X, bY ⇢ Y by performing strong rank-revealing

QRs [80] over, respectively, K>
w and Kw (this is also called a CUR decomposition):

KwPy = QyRy

K>

wPx = QxRx

and build bX by selecting the elements of Px associated to the largest rows of Rx and similarly

for bY (if they di↵er in size, extend the smallest). We denote the rank of this factorization

r1 = | bX| = |bY |, and in practice, we observe that r1 ⇡ rSV D, where rSV D is the rank the

truncated SVD of K (X,Y ) would provide. The resulting factorization is

K (X,Y ) ⇡ K (X, bY )K ( bX, bY )�1K ( bX,Y ) (5.3)

Note that, in this process, at no point did we built any Lagrange basis function associated

with X and Y . We only evaluate the kernel K at X ⇥ Y .

This method appears to be very e�cient in selecting sets bX and bY of minimum sizes.

Indeed, instead, one could aim for a simple interpolation of K (x, y) over both X and Y
separately. For instance, using the regular polynomial interpolation at Chebyshev nodes X

and Y , it would lead to a factorization of the form

K (X,Y ) ⇡ S(X,X)K (X,Y )T (Y, Y )>

In this expression, we collect the Lagrange basis functions (each one associated to a node

of X) evaluated at X in the columns of S(X,X) and similarly for T (Y, Y ). This provides

a robust way of building a low-rank approximation. The rank r0 = min(|X|, |Y |), however,
is usually much larger than the true rank rSV D and than r1 (given a tolerance). Note that

even if those factorizations can always be further recompressed to a rank ⇡ rSV D, they

incur a high upfront cost because of the rank r0 � rSV D. See Section 5.1.3 for a discussion

about this.
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Distinguishing features of the method

Since many methods resemble our approach, we point out its distinguishing features. The

singular value decomposition (SVD) o↵ers the optimal low-rank representation in the 2-

norm. However, its complexity scales like O
�
n3
�
. In addition, we will show that the new

approach is negligibly less accurate than the SVD in most cases.

The rank-revealing QR and LU factorization, and methods of random projections [88],

have a reduced computational cost of O
�
n2r

�
, but still scale quadratically with n.

Methods like ACA [18], the rank-revealing LU factorization with rook pivoting [75], and

techniques that randomly sample from columns and rows of the matrix scale like O(nr), but

they provide no accuracy guarantees. In fact, counterexamples can be found where these

methods fail. In contrast, our approach relies on Chebyshev nodes, which o↵ers strong

stability and accuracy guarantees. The fact that new interpolation points, X and Y , are

introduced (the Chebyshev nodes) in addition to the existing points in X and Y is one of

the key elements.

Analytical methods are available, like the fast multipole method, etc., but they are

limited to specific kernels. Other techniques, which are more general, like Taylor expansion

and Chebyshev interpolation [65], have strong accuracy guarantees and are as general as the

method presented. However, their cost is much greater; in fact, the di↵erence in e�ciency

is measured directly by the reduction from r0 to r1 in our approach.

Low-rank approximation based on SVD and interpolation

Consider the kernel function K and its singular value decomposition [127, theorem VI.17]:

Theorem 5.1 (Singular Value Decomposition). Suppose K : [�1, 1]d ⇥ [�1, 1]d is square

integrable. Then there exist two sequences of orthogonal functions {ui}1i=1 and {vi}di=1 and

a non-increasing sequence of non-negative real number {si}1i=1 such that

K (x, y) =
1X

s=1

�sus(x)vs(y) (5.4)

As one can see, under relatively mild assumptions, any kernel function can be expanded

into a singular value decomposition. Hence, from any kernel function expansion, we find

a low-rank decomposition for the matrix K (X,Y ) (which is not the same as the matrix
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SVD):

K (X,Y ) ⇡
rX

s=1

us(X)�svs(Y ) =
h
u1(X) · · · ur(X)

i
2

664

�1
. . .

�r

3

775

2

664

v>1 (Y )
...

v>r (Y )

3

775 (5.5)

where the sequence {si}1i=1 was truncated at an appropriate index r. As a general rule of

thumb, the smoother the function K (x, y), the faster the decay of the �s’s and the lower

the rank.

If we use a polynomial interpolation method with Chebyshev nodes, we get a similar

form:

K (X,Y ) ⇡ S(X,X) K (X,Y ) T (Y, Y )> (5.6)

The interpolation functions S(x,X) and T (y, Y ) have strong accuracy guarantees, but

the number of terms required in the expansion is r0 � r ⇡ r1. This is because Chebyshev

polynomials are designed for a broad class of functions. In contrast, the SVD uses basis

functions us and vs that are optimal for the chosen K .

Optimal interpolation methods

We will now discuss a more general problem, then derive our algorithm as a special case.

Let’s start with understanding the optimality of the Chebyshev interpolation. With Cheby-

shev interpolation, S(x,X) and T (y, Y ) are polynomials. This is often considered one of

the best (most stable and accurate) ways to interpolate smooth functions. We know that

for general polynomial interpolants we have:

f(x)� S(x,X)f(X) =
f (m)(⇠)

m!

mY

j=1

(x�Xj) (5.7)

If we assume that the derivative f (m)(⇠) is bounded, we can focus on finding interpolation

points such that
mY

j=1

(x�Xj) = xm � rX(x)

is minimal, where rX(x) is a degree m � 1 polynomial. Since we are free to vary the

interpolation pointsX, then we havem parameters (the location of the interpolation points)
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and m coe�cients in rX . By varying the location of the interpolation points, we can recover

any polynomial rX . Chebyshev points are known to solve this problem optimally. That is,

they lead to an rX such that maxx |xm � rX(x)| is minimal.

Chebyshev polynomials are a very powerful tool because of their generality and simplic-

ity of use. Despite this, we will see that this can be improved upon with relatively minimal

e↵ort. Let’s consider the construction of interpolation formulas for a family of functions

K (x,�), where � is a parameter. We would like to use the SVD, but, because of its high

computational cost, we rely on the cheaper rank-revealing QR factorization (RRQR, a QR

algorithm with column pivoting). RRQR solves the following optimization problem:

min
{�s,vs}

max
�

���K (x,�)�
mX

s=1

K (x,�s)vs(�)
���
2
, vs(�t) = �st

where the 2-norm is computed over x—in addition RRQR produces an orthogonal ba-

sis for {K (x,�s)}s but this is not needed in the current discussion. The vector space

span{K (x,�s)}s=1,...,m is close to span{us}s=1,...,m [see (5.4)], and the error can be bounded

by �m+1.

Define b⇤ = {�1, . . . ,�m}. From there, we identify a set of m interpolation nodes bX such

that the square matrix

K ( bX, b⇤) :=
h
K ( bX,�1) · · · K ( bX,�m)

i

is as well-conditioned as possible. We now define our interpolation operator as

bS(x, bX) = K (x, b⇤)K ( bX, b⇤)�1

By design, this operator is exact on K (x,�s):

bS(x, bX)K ( bX,�s) = K (x,�s)

It is also very accurate for K (x,�) since

bS(x, bX)K ( bX,�) ⇡
mX

s=1

bS(x, bX)K ( bX,�s)vs(�) =
mX

s=1

K (x,�s)vs(�) ⇡ K (x,�)

With Chebyshev interpolation, S(x,X) is instead defined using order m � 1 polynomial
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functions.

A special case that illustrates the di↵erence between SI and Chebyshev, is with rank-1

kernels:

K (x,�) = u(x)v(�)

In this case, we can pick any x1 and �1 such that K (x1,�1) 6= 0, and define bX = {x1} and

bS(x, bX) = K (x,�1)K (x1,�1)
�1

bS(x, bX)K ( bX,�) = u(x)v(�1)
1

u(x1)v(�1)
u(x1)v(�) = u(x)v(�)

SI is exact using a single interpolation point x1. An interpolation using Chebyshev polyno-

mials would lead to errors, for any expansion order (unless u is fortuitously a polynomial).

So, one of the key di↵erences between SI and Chebyshev interpolation is that SI uses,

as a basis for its interpolation, a set of nearly optimal functions that approximate the left

singular functions of K , rather than generic polynomial functions.

Proposed method

In this work, we use the framework from Section 5.1.3 to build an interpolation operator for

the class of functions K (x, y), which we view as a family of functions of x parameterized by

y (and vice versa to obtain a symmetric interpolation method). The approximation (5.3)

can be rewritten

K (X,Y ) ⇡
⇥
K (X, bY )K ( bX, bY )�1

⇤
K ( bX, bY )

⇥
K ( bX, bY )�1K ( bX,Y )

⇤

and by comparing with (5.6), we recognize the interpolation operators:

bS(x, bX) = K (x, bY )K ( bX, bY )�1, bT (y, bY ) = K ( bX, y)>K ( bX, bY )�T

These interpolation operators are nearly optimal; because of the way these operators are

constructed we call the method “Skeletonized Interpolation.” The sets bX and bY are the

minimal sets such that if we sample K at these points we can interpolate K at any other

point with accuracy ". In particular, bX and bY are much smaller than their Chebyshev-

interpolant counterparts X and Y and their size, r1, is very close to r in (5.5). The

approach we are proposing produces nearly-optimal interpolation functions for our kernel,
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instead of generic polynomial functions.

Note that none of the previous discussions explains why the proposed scheme is stable;

the inverse K ( bX, b⇤)�1 as well as K ( bX, bY )�1 in (5.3) could become troublesome numeri-

cally. We will explain in detail in Section 5.3 why this is not an issue numerically, and we

explore the connection with interpolation in more detail in Section 5.4.

5.2 Skeletonized Interpolation

5.2.1 The algorithm

Algorithm 5.1 provides the high-level version of the algorithm. It consists of 3 steps:

• Build grids X and Y , tensor grids of Chebyshev nodes. Over [�1, 1] in 1D, the m

Chebyshev nodes of the first kind are defined as

x̄k = cos

✓
2k � 1

2m
⇡

◆
k = 1, . . . ,m

In higher dimensions, they are defined as the tensor product of one-dimensional grids.

The number of points in every dimension should be such that

mX

k=1

nX

l=1

Sk(x)K (x̄k, ȳl)Tl(y) = S(x,X)K (X,Y )T (y, Y )>

provides an � uniform approximation over [�1, 1]d ⇥ [�1, 1]d of K (x, y), i.e.,

|S(x,X)K (X,Y )T (y, Y )> �K (x, y)|  �

for all (x, y) 2 [�1, 1]d ⇥ [�1, 1]d. Denote r0 = min(|X|, |Y |).

• Recompress the grid by performing a strong rank-revealing QR factorization [80] of

diag(WX)1/2K (X,Y )diag(W Y )
1/2 (5.8)

and its transpose, up to accuracy " (i.e., the 2-norm error of the approximation is at

most "). This factorization is also named CUR decomposition [111, 45]. While our

error estimates only hold for strong rank-revealing QR factorizations, in practice, a

simple column-pivoted QR factorization based on choosing columns with large norms
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works as well. In the case of Chebyshev nodes of the first kind in 1D over [�1, 1] the
integration weights are given by

wk =
⇡

m

q
1� x̄2k =

⇡

m
sin

✓
2k � 1

2m
⇡

◆

The weights in d dimensions are the products of the corresponding weights in 1D,

and the diag(WX) and diag(W Y ) matrices are simply the diagonal matrices of the

integration weights. Denote

r1 = | bX| = |bY |

In case the sets bX and bY output by those RRQR’s are of slightly di↵erent sizes (which

we rarely noticed in our experiments), extend the smallest to have the same size as

the largest.

• Given bX and bY , the low-rank approximation is given by

K (X, bY )K ( bX, bY )�1K ( bX,Y )

of rank r1 ⇡ rSV D.

Algorithm 5.1 summarizes the algorithm.

Algorithm 5.1 Skeletonized Interpolation

procedure Skeletonized Interpolation(K : [�1, 1]d ⇥ [�1, 1]d ! R, X, Y , ", �)
require " < �
Build X and Y , sets of Chebyshev nodes over [�1, 1]d that interpolate K with error

� uniformly
Build Kw as Kw = diag(WX)1/2K (X,Y )diag(W Y )1/2.
Extract bY ✓ Y by performing a strong RRQR over Kw with 2-norm tolerance ".
Extract bX ✓ X by performing a strong RRQR over K>

w with 2-norm tolerance ".
If the sets have di↵erent size, extends the smallest to the size of the largest.
return K (X,Y ) ⇡ K (X, bY )K ( bX, bY )�1K ( bX,Y ).

end procedure
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5.2.2 Theoretical Convergence

Overview

In this section, we prove that the error made during the RRQR is not too much amplified

when evaluating the interpolant. We first recall that

1. From interpolation properties,

K (x, y) = S(x,X)K (X,Y )T (y, Y )> + EINT(x, y)

where T and S are small matrices (i.e., bounded by logarithmic factors in r0) and

|EINT(x, y)|  � (by construction).

2. From the strong RRQR properties,

Kw =

"
I

bS

#
bKw

h
I bT>

i
+ EQR

where bKw has a spectrum similar to that of Kw (up to a small polynomial), bS and bT
are bounded by a small polynomial, and where " := kEQRk2 (by construction).

Then, by combining those two facts and assuming � < ", one can show

1. First, that the interpolation operators are bounded,

kK (x, bY )K ( bX, bY )�1k2 = O(q(r0, r1)) (5.9)

where q is a fixed degree polynomial.

2. Second, that the error " made in the RRQR is not too much amplified, i.e.,

|K (x, y)�K (x, bY )K ( bX, bY )�1K ( bX, y)|  "r(r0, r1) (5.10)

where r is another fixed degree polynomial.

Finally, if one assumes that �i(Kw) decays exponentially fast, so does " and the resulting

approximation in (5.10) converges as r0 !1.

We now present the main lemmas leading to the above results.
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Interpolation-related results

We first consider the interpolation itself. Consider X and Y , constructed such as

K (x, y) = S(x,X)K (X,Y )T (y, Y )> + EINT(x, y)

Lemma 5.1 (Interpolation at Chebyshev Nodes). 8x 2 X ⇢ Rd and X tensor grids of

Chebyshev nodes of the first kind, let m = |X|. Then

kS(x,X)k2 = O
⇣
log(m)d

⌘

In addition, the weights, collected in the weight matrix diag(WX) are such that

kdiag(WX)1/2k2 
⇡d/2p
m

= O
✓

1p
m

◆

kdiag(WX)�1/2k2 
m

⇡d/2
= O(m)

Proof. This bound on the Lagrange basis is a classical result related to the growth of the

Lebesgue constant in polynomial interpolation. For m Chebyshev nodes of the first kind on

[�1, 1] and the associated Lagrange basis functions `1, . . . , `m we have the following result

[96, equation 13]

max
x2[�1,1]

mX

i=1

|`i(x)| 
2

⇡
log(m+ 1) + 0.974 = O(log(m))

This implies that in one dimension,

kS(x,X)k2  kS(x,X)k1 = O(logm)

Going from one to d dimensions can be done using Kronecker products. Indeed, for x 2 Rd,

S(x,X) = S(x1, X1)⌦ · · ·⌦ S(xd, Xd)

where x = (x1, . . . , xd) and X1, . . . , Xd are the one-dimensional Chebyshev nodes. Since
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for all a 2 Rm, b 2 Rn, ka⌦ bk2 =
qP

i,j(aibj)
2 = kab>kF = kak2kbk2, it follows that

kS(x,X)k2 = kS(x1, X1)⌦ · · ·⌦ S(xd, Xd)k2 =
dY

i=1

kS(xi, Xi)k2 =
dY

i=1

O(logmi)

This implies, using a fairly loose bound,

kS(x,X)k2 = O
⇣
log(|X|)d

⌘

The same argument can be done for T (y, Y ).

In 1D, the weights are

wk =
⇡

m
sin

✓
2k � 1

2m
⇡

◆

for k = 1, . . . ,m. Clearly, wk > 0 and wk < ⇡
m . Also, the minimum being reached at k = 1

or k = m,

wk �
⇡

m
sin

⇣ ⇡

2m

⌘
>
⇡

m

2⇡

2⇡m
=

⇡

m2

Since the nodes in d dimensions are products of the nodes in 1D, it follows that

kdiag(WX)k2 
⇡d

m

kdiag(WX)�1k2 
m2

⇡d

The result follows.

Skeletonization results

We now consider the skeletonization step of the algorithm performed through the two suc-

cessive rank-revealing QR factorizations.

Rank-Revealing QR factorizations Let us first recall what a rank-revealing QR fac-

torization is. Given a matrix A 2 Rm⇥n, one can compute a rank-revealing QR factorization

[75] of the form

A⇧ =
h
Q1 Q2

i "R11 R12

R22

#
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where ⇧ is a permutation matrix, Q an orthogonal matrix, and R a triangular matrix.

Both R and Q are partitioned so that Q1 2 Rm⇥k and R11 2 Rk⇥k. If kR22k ⇡ ", this

factorization indicates that A has an "-rank of k. The converse, however, is not necessarily

true [75] in general.

From there, one can also write

A⇧ = Q1R11

h
I R�1

11 R12

i
+ E = A1

h
I T

i
+ E

where T is the interpolation operator, A1 a set of k columns of A, and E the approximation

error. This approximation can be achieved by a simple column-pivoted QR algorithm [75].

This algorithm, however, is not guaranteed to always work (i.e., even if A has rapidly

decaying singular values, this rank-revealing factorization may fail to exhibit it).

A strong rank-revealing QR, however, has more properties. It has been proven [80, 45]

that one can compute in O
�
mn2

�
a rank-revealing QR factorization that guarantees

�i(A1) �
�i(A)

q1(n, k)
, �j(E)  �k+j(A)q1(n, k) and kTkF  q2(n, k) (5.11)

where q1 and q2 are two small polynomials (with fixed constants and degrees). The existence

of this factorization is a crucial part of our argument. Using the interlacing property of

singular values [75], this implies that we now have both lower and upper bounds on the

singular values of A1
�i(A)

q1(n, k)
 �i(A1)  �i(A) (5.12)

From (5.11) we can directly relate the error E and �k+1 from

kEk2 = �1(E)  �k+1(A)q1(n, k) (5.13)

Finally, given a matrix A, one can apply the above result to both its rows and columns,

leading to a factorization

⇧>

r A⇧c =

"
I

Tr

#
Arc

h
I Tc

i
+ E

with the same properties as detailed above (see also [45, theorem 3 and remark 5]).
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Skeletonized Interpolation We can now apply this result to the Kw and bKw matrices.

Lemma 5.2 (CUR Decomposition of Kw). The partition X = bX [ qX, Y = bY [ qY of

Algorithm 5.1, with r0 = |X| = |Y | and r1 = | bX| = |bY |, is such that there exist qS, qT ,
EQR(X,Y ) matrices (with " := kEQR(X,Y )k2) and polynomials p1(r0, r1), p2(r0, r1) (with

fixed degrees) such that

Kw =

"
I

qS

#
bKw

h
I qT>

i
+ EQR(X,Y )

and where

"  p1(r0, r1)�r1+1(Kw)

kqSk2  p2(r0, r1)

k qTk2  p2(r0, r1)

Finally, we have

k bK�1
w k2 

p1(r0, r1)2

"

Proof. The first three results are direct applications of [45, theorem 3 and remark 5] as

explained in the previous paragraph (using the fact that the 2-norm and Frobenius norm

are equivalent). The last result follows from the properties of the strong rank-revealing QR:

k bK�1
w k2 =

1

�r1( bKw)
 p1(r0, r1)

�r1(Kw)
 p1(r0, r1)

�r1+1(Kw)
 p1(r0, r1)2

"

The first inequality follows from �r1(Kw)  �r1( bKw)p1(r0, r1) (5.12), the second from

�r1(Kw) � �r1+1(Kw) (by definition of singular values) and the last from �r1+1(Kw)�1 
p1(r0, r1)"�1 (5.13).

This leads to the first result

Theorem 5.2. If bX and bY are constructed following Algorithm 5.1, then there exists a
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fixed degree polynomial q(r0, r1) such that for any x 2 X , y 2 Y,

kK (x, bY )K ( bX, bY )�1k2 = O(q(r0, r1))

kK ( bX, bY )�1K ( bX, y)k2 = O(q(r0, r1))

Proof. We show the result for the second equation. This requires using, consecutively, the

interpolation result and the CUR decomposition one. First, one can write from Lemma 5.1

and the interpolation,

K ( bX, bY )�1K ( bX, y) = K ( bX, bY )�1
h
K ( bX,Y )T (y, Y )> + EINT( bX, y)

i

Then, introducing the weight matrices and applying Lemma 5.2 on the interpolation matrix,

K ( bX,Y ) =

= diag(cWX)�1/2diag(cWX)1/2K ( bX,Y )diag(W Y )
1/2diag(W Y )

�1/2

= diag(cWX)�1/2
n
diag(cWX)1/2K ( bX, bY )diag(cWY )

1/2
h
I qT>

i

+ EQR( bX,Y )
o
diag(W Y )

�1/2

Finally, combining and distributing all the factors gives us

K ( bX, bY )�1K ( bX, y) = diag(cWY )
1/2

h
I qT>

i
diag(W Y )

�1/2T (y, Y )>

+ K ( bX, bY )�1diag(cWX)�1/2EQR( bX,Y )diag(W Y )
�1/2T (y, Y )>

+ K ( bX, bY )�1EINT( bX, y)

Here, we can bound all terms:

• For the first term, Lemma 5.1 and Lemma 5.2 show that the expression is bounded

by a fixed degree polynomial;

• For the second term, use the fact that, since diag(cWX)1/2 and diag(W Y )�1/2 are

bounded by fixed degree polynomials,

k bK�1
w k2 

p21(r0, r1)

"
) kK ( bX, bY )�1k2 

p0(r0, r1)

"

for some fixed degree polynomial p0. Hence, since kEQR(X,Y )k2 = ", the product is
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again bounded by a polynomial since the " cancel out ;

• The last term can be bounded in a similar way using

EINT(x, y)  � < "

We conclude that there exists a fixed degree polynomial q such that

kK ( bX, bY )�1K ( bX, y)k2 = O(q(r0, r1))

The proof is similar in x.

The key ingredient is simply that k bK�1
w k2  p1(r0, r1)2"�1 from the RRQR properties;

hence bKw is ill-conditioned, but not arbitrarily. Its condition number grows like "�1. Then,

when multiplied by quantities like " or � < ", the factors cancel out and the resulting

product can be bounded.

Link between the node matrix and the continuous SVD

In this section, we link the continuous SVD and the spectrum (singular values) of the matrix

diag(WX)1/2Kwdiag(W Y )1/2. This justifies the use of the weights.

Let us consider the case where interpolation is performed at Gauss-Legendre (not Cheby-

shev) nodes X,Y with the corresponding integration weights WX ,W Y . (A more complete

explanation can be found in [163].)

Take the classical discrete SVD of Kw,

Kw = U ⌃V
>

We then have

K (x, y) = Sw(x,X)U ⌃V
>
Tw(y, Y )>| {z }

=K (x,y)

+EINT(x, y)

Then, denote the sets of new basis functions

u(x) = Sw(x,X)U v(y) = Tw(y, Y )V
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The key is to note that those functions are orthonormal. Namely, for u,

Z

X

ui(x)uj(x)dx =
r0X

k=1

wkui(xk)uj(xk)

=
r0X

k=1

wk

 
r0X

l=1

w�1/2
l Sl(xk)U li

! 
r0X

l=1

w�1/2
l Sl(xk)U lj

!

=
r0X

k=1

wk

 
r0X

l=1

�klw
�1/2
l U li

! 
r0X

l=1

�klw
�1/2
l U lj

!

=
r0X

k=1

wkw
�1/2
k Ukiw

�1/2
k Ukj =

r0X

k=1

UkiUkj = �ij

The same result holds for v. This follows from the fact that a Gauss-Legendre quadrature

rule with n points can exactly integrate polynomials up to degree 2n� 1. This shows that

we are implicitly building a factorization

K (x, y) =
1X

s=1

�sus(x)vs(y) =
r0X

s=1

�s(Kw)us(x)vs(y)

| {z }
=K (x,y)

+EINT(x, y) (5.14)

where the approximation error is bounded by the interpolation error EINT and where the

sets of basis functions are orthogonal.

Assume now that the kernel K is square-integrable over [�1, 1]d ⇥ [�1, 1]d. This is

called a Hilbert-Schmidt kernel [129, Lemma 8.20]. This implies that the associated linear

operator is compact [129, Theorem 8.83]. K is compact as well since it is finite rank [129,

Theorem 8.80]. Given the fact that |EINT(x, y)|  � for all x, y, kK �K kL2
 C� for some

C and hence, by compactness of both operators [81, Corollary 2.2.14],

|�i � �i(K )|  C�

for some C > 0. Then, from the above discussion, we clearly have �i(Kw) = �i(K ) +O(�)

and hence

�i(Kw) = �i +O(�)

This result only formally holds for Gauss-Legendre nodes and weights. However, this

motivates the use of integration weights in the case of Chebyshev as well.



CHAPTER 5. SKELETONIZED INTERPOLATION 141

Convergence of the Skeletonized interpolation

We now present the main result of this chapter:

Theorem 5.3 (Convergence of Skeletonized Interpolation). If bX and bY are constructed

following Algorithm 5.1, then there exists a fixed degree polynomial r(r0, r1) such that for

any x 2 X and y 2 Y,

|K (x, y)�K (x, bY )K ( bX, bY )�1K ( bX, y)|  " r(r0, r1)

The key here is that the error incurred during the CUR decomposition, ", is amplified

by at most a polynomial of r0 and r1. Hence, Theorem 5.3 indicates that if the spectrum

decays fast enough (i.e., if "! 0 when r0, r1 !1 faster than r(r0, r1) grows), the proposed

approximation should converge to the true value of K (x, y).

Proof. Combining interpolation and CUR decomposition results one can write

K (x, y) = S(x,X)K (X,Y )T (y, Y )> + EINT(x, y)

= Sw(x,X)Kw(X,Y )Tw(y, Y )> + EINT(x, y)

= Sw(x,X)

""
I

qS

#
Kw( bX, bY )

h
I qT>

i
+ EQR(X,Y )

#
Tw(y, Y )> + EINT(x, y)

= Sw(x,X)

"
Kw( bX, bY )

qSKw( bX, bY )

#
Kw( bX, bY )�1

h
Kw( bX, bY ) Kw( bX, bY ) qT>

i
Tw(y, Y )>

+ Sw(x,X)EQR(X,Y )Tw(y, Y )> + EINT(x, y)

= Sw(x,X)
h
Kw(X, bY ) + EQR(X, bY )

i
Kw( bX, bY )�1

h
Kw( bX,Y ) + EQR( bX,Y )

i

⇥ Tw(y, Y )> + Sw(x,X)EQR(X,Y )Tw(y, Y )> + EINT(x, y)

= (K (x, bY ) + EINT(x, bY ))K ( bX, bY )�1(K ( bX, y) + EINT( bX, y))

+ Sw(x,X)EQR(X, bY )Kw( bX, bY )�1Kw( bX,Y )Tw(y, Y )>

+ Sw(x,X)Kw(X, bY )Kw( bX, bY )�1EQR( bX,Y )Tw(y, Y )>

+ Sw(x,X)EQR(X, bY )Kw( bX, bY )�1EQR( bX,Y )Tw(y, Y )>

+ Sw(x,X)EQR(X,Y )Tw(y, Y )> + EINT(x, y)

Distributing everything, factoring the weights matrices, and simplifying, we obtain the
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following, where we indicate the bounds on each term on the right,

K (x, y) = K (x, bY )K ( bX, bY )�1K ( bX, y) Approximation

+ EINT(x, bY )K ( bX, bY )�1K ( bX, y) O(�q(r0, r1))

+ K (x, bY )K ( bX, bY )�1EINT( bX, y) O(�q(r0, r1))

+ EINT(x, bY )K ( bX, bY )�1EINT( bX, y) O
�
�p0(r0, r1)

�

+ S(x,X)diag(WX)�1/2EQR(X, bY )diag(cWY )
�1/2

K ( bX, bY )�1K ( bX,Y )T (y, Y )> O
⇣
"(log r0)

2dq(r0, r1)r
2
0

⌘

+ S(x,X)K (X, bY )K ( bX, bY )�1diag(cWX)�1/2

EQR( bX,Y )diag(W Y )
�1/2T (y, Y )> O

⇣
"(log r0)

2dq(r0, r1)r
2
0

⌘

+ S(x,X)diag(WX)�1/2EQR(X, bY )

diag(cWY )
�1/2K ( bX, bY )�1diag(cWX)�1/2

EQR( bX,Y )diag(W Y )
�1/2T (y, Y )> O

⇣
"(log r0)

2dr20p1(r0, r1)
⌘

+ S(x,X)diag(WX)�1/2EQR(X,Y )

diag(W Y )
�1/2T (y, Y )> O

⇣
"(log r0)

2dr20

⌘

+ EINT(x, y) O(�)

This concludes the proof.

What is simply left is then linking ", r0, and r1. We have, from the CUR properties,

"  p1(r0, r1)�r1+1(Kw)

which implies

|K (x, y)�K (x, bY )K ( bX, bY )�1K ( bX, y)| = O(�r1+1(Kw)s(r0, r1))

for another fixed-degree polynomial s.

Then, following the discussion from Section 5.2.2, we expect (note that this is not proven)

�i(Kw) = �i +O(�)
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Hence, if K has rapidly-decaying singular values, so does Kw. Assuming the singular values

of Kw decay exponentially fast, i.e.,

log �k(Kw) ⇡ poly(k),

we find

|K (x, y)�K (x, bY )K ( bX, bY )�1K ( bX, y)|! 0

as r0, r1 !1, or alternatively, as "! 0.

5.3 Numerical stability

5.3.1 The problem

The previous section indicates that, at least theoretically, we can expect convergence as

"! 0. However, the factorization

K (X,Y ) ⇡ K (X, bY )K ( bX, bY )�1K ( bX,Y ) (5.15)

seems to be numerically challenging to compute. Indeed, as we showed in the previous

section, we can only really expect at best k bK�1
w k2 = O

�
"�1

�
which indicates that, roughly,

(K ( bX, bY )) = O
✓
1

"

◆

i.e., the condition number grows with the desired accuracy, and convergence beyond a certain

threshold (like 10�8 in double-precision) seems impossible. Hence, we can reasonably be

worried about the numerical accuracy of computing (5.15) even with a stable algorithm.

Note that this is not a pessimistic upper bound; by construction, bKw really is ill-

conditioned, and experiments show that solving linear systems bKwx = b with random

right-hand sides is numerically challenging and leads to errors of the order "�1.

5.3.2 Error Analysis

Consider (5.15) and let for simplicity

Kx = K (X, bY ), K = K ( bX, bY ), Ky = K ( bX,Y )
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In this section, our goal is to show why one can expect this formula to be accurately

computed if one uses backward stable algorithms. As proved in Section 5.2, we have the

following bounds on the interpolation operators

kKxK
�1k2  q(r0, r1)

kK�1Kyk2  q(r0, r1)

for some polynomial q. The key is that there is no "�1 in this expression. Those bounds

essentially follow from the guarantees provided by the strong rank-revealing QR algorithm.

Now, let’s compute the derivative of KxK�1Ky with respect to Kx, K and Ky [123]:

@(KxK
�1Ky) = (@Kx)K

�1Ky +Kx(@(K
�1))Ky +KxK

�1(@Ky)

= (@Kx)K
�1Ky �KxK

�1(@K)K�1Ky +KxK
�1(@Ky)

Then, consider perturbing Kx, K, Ky by � (assume all matrices are of order O(1) for

the sake of simplicity), i.e., let �Kx, �Ky and �K be perturbations of Kx, Ky and K,

respectively, with

k�Kxk = O(�) , k�Kyk = O(�) , k�Kk = O(�) .

Then, using the above derivative as a first-order approximation, we can write

kKxK
�1K � (Kx + �Kx)(K + �K)�1(Ky + �Ky)k

 k�KxkkK�1Kyk+ kKxK
�1kk�KkkK�1Kyk+ kKxK

�1kk�Kyk+O
�
�2
�

 2�q(r0, r1) + �q(r0, r1)
2 +O

�
�2
�

= �(2q(r0, r1) + q(r0, r1)
2) +O

�
�2
�

We see that the computed result is independent of the condition number of K = K ( bX, bY )

and depends on q(r0, r1) only.

Assume now that we are using backward stable algorithms in our calculations [92]. We

then know that the computed result is the result of an exact computation where the inputs

have been perturbed by �. The above result indicates that the numerical result (with

roundo↵ errors) can be expected to be accurate up to � times a small polynomial, hence

stable.
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5.4 Skeletonized Interpolation as a new interpolation rule

As indicated in the introduction, one can rewrite

K (x, y) ⇡ K (x, bY )K ( bX, bY )�1K ( bX, y)

=
h
K (x, bY )K ( bX, bY )�1

i
K ( bX, bY )

h
K ( bX, bY )�1K ( bX, y)

i

= bS(x, bX)K ( bX, bY ) bT (y, bY )>

where we recognize two new “cross-interpolation” (because they are built by consider-

ing both the X and Y space) operators bS(x, bX) = K (x, bY )K ( bX, bY )�1 and bT (y, bY ) =

K ( bX, y)>K ( bX, bY )�>. In this notation, each column of bS(x, bX) and bT (y, bY ) is a La-

grange function associated with the corresponding node in bX or bY and evaluated at x or y,

respectively.

This interpretation is interesting as it allows us to “decouple” x and y and analyze them

independently. In particular, one can look at the quality of the interpolation of the basis

functions uk(x) and vk(y) using bS and bT . Indeed, if this is accurate, it is easy to see that

the final factorization is accurate. Indeed,

K (x, y) ⇡
rX

k=1

�kuk(x)vk(y)

⇡
rX

k=1

�k(bS(x, bX)uk( bX))( bT (y, bY )vk(bY ))>

= bS(x, bX)

 
rX

k=1

�kuk( bX)vk(bY )>
!
bT (y, bY )>

⇡ bS(x, bX)K ( bX, bY ) bT (y, bY )>

⇡ K (x, bY )K ( bX, bY )�1K ( bX, y)

To illustrate this, let us consider a simple 1-dimensional example. Let x, y 2 [�1, 1] and
consider

K (x, y) =
1

4 + x� y
.

Then approximate this function up to " = 10�10, and obtain a factorization of rank r.



CHAPTER 5. SKELETONIZED INTERPOLATION 146

Figure 5.1 illustrates the 4th Lagrange basis function in x, i.e., bS(x, bX)4 and the classical

Lagrange polynomial basis function associated with the same set bX. We see that they are

both 1 at bX4 and 0 at the other points. However, bS(x, bX)4 is much more stable and small

than its polynomial counterpart. In the case of polynomial interpolation at equispaced

nodes, the growth of the Lagrange basis function (or, equivalently, of the Lebesgue constant)

is the reason for the inaccuracy and instability.

Figure 5.2 shows the e↵ect of interpolating ur(x) using bS(x, bX) as well as using the

usual polynomial interpolation at the nodes bX. We see that bS(x, bX) interpolates very

well ur(x), showing indeed that we implicitly build an accurate interpolant, even on the

last (least smooth) eigenfunctions. The usual polynomial interpolation fails to capture any

feature of ur on the other hand. Note that we could have reached a similar accuracy using

interpolation at Chebyshev nodes but only by using many more interpolation nodes.

Finally, Figure 5.3 shows how well we approximate the various r eigenfunctions. As

one can see, interpolation is very accurate on u1(x), but the error grows for less smooth

eigenfunctions. The growth is, roughly, similar to the growth of "
�i
. Notice how this is just

enough so that the resulting factorization is accurate:

bS(x, bX)K ( bX, y) =
rX

s=1

�s bS(x, bX)us( bX)vs(y) +O(")

=
rX

s=1

�s

✓
us(x) +O

✓
"

�s

◆◆
vs(y) +O(")

=
rX

s=1

�sus(x)vs(y) +
rX

s=1

O(") vs(y) +O(")

= K (x, y) +O(")

It is also consistent with the analysis of Section 5.3. This illustrates how the algorithm

works: it builds an interpolation scheme that allows for interpolating the various eigenfunc-

tions of K with just enough accuracy so that the resulting interpolation is accurate up to

the desired accuracy.

5.5 Numerical experiments

In this section, we present some numerical experiments on various geometries. We study the

quality (how far r1 is from the optimal SVD-rank r and how accurate the approximation
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Figure 5.1: 4th Lagrange basis function. We see that the SI-based Lagrange basis function
is more stable than the polynomial going through the same interpolation nodes.
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Figure 5.2: Interpolation of the last (and least smooth) eigenfunction. We see that the SI
interpolant is much more accurate than the polynomial interpolant going through the same
interpolation nodes.
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Figure 5.3: Interpolation error on the various eigenfunctions. The error grows just slowly
enough with the eigenfunctions so that the overall interpolant is accurate up to the desired
accuracy.
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is) of the algorithm in Section 5.5.1 and Section 5.5.2. We illustrate in Section 5.5.3 the

improved guarantees of RRQR and justify the use of weights in Section 5.5.4. Finally,

Section 5.5.5 studies the algorithm computational complexity.

The experiments are done using Julia [20] and the code is sequential. For the strong

rank-revealing QR algorithm, we use the LowRankApprox.jl Julia package [93]. The code

can be downloaded from https://stanford.edu/~lcambier/papers.html.

5.5.1 Simple geometries

We begin this section with an elementary problem, as depicted in Figure 5.4b. In this

problem, we consider the usual kernel K (x, y) = kx� yk�1
2 where x, y 2 R2. X and Y are

two squares of side of length 1, centered at (0.5, 0.5) and (2.5, 2.5) respectively. Finally, X

and Y are two uniform meshes of 50⇥ 50 mesh points each, i.e., n = 2500.

We pick the Chebyshev grids X and Y using a heuristic based on the target accuracy ".

Namely, we pick the number of Chebyshev nodes in each dimension (i.e., x1, x2, y1 and y2)

independently (by using the midpoint of X and Y as reference), such that the interpolation

error is approximately less than "3/4. This value is heuristic but performs well for those

geometries. Other techniques are possible. This choice is based in part on the observation

that the algorithm is accurate even when � > ", i.e., when the Chebyshev interpolation is less

accurate than the actual final low-rank approximation through Skeletonized Interpolation.

Consider then Figure 5.4a. The r0 line indicates the rank (r0 = min(|X|, |Y |)) of the low-
rank expansion through interpolation. The r1 line corresponds to the rank obtained after

the RRQR over K (X,Y ) and its transpose, i.e., it is the rank of the final approximation

K (X,Y ) ⇡ K (X, bY )K ( bX, bY )�1K ( bX,Y )

Finally, “SVD rank” is the rank one would obtain by truncating the SVD of

K (X,Y ) = USV >

at the appropriate singular value, as to ensure

kK (X,Y )� K̃ (X,Y )kF ⇡ "kK (X,Y )kF

Similarly, “RRQR” is the rank a rank-revealing QR on K (X,Y ) would obtain. This is

https://stanford.edu/~lcambier/papers.html
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usually slightly suboptimal compared to the SVD. Those two values are there to illustrate

that r1 is close to the optimal value.

The conclusion regarding Figure 5.4a is that Skeletonized Interpolation is nearly optimal

in terms of rank. While the rank obtained by the interpolation is clearly far from optimal,

the RRQR over K (X,Y ) allows us to find subsets bX ⇢ X and bY ⇢ Y that are enough to

represent well K (X,Y ), and the final rank r1 is nearly optimal compared to the SVD-rank

r. We also see that the rank of a blind RRQR over K (X,Y ) is higher than the SVD-rank

and usually closer—if not identical—to r1.

We want to re-emphasize that, in practice, the error of the sets X, Y —i.e., the error

of the polynomial interpolation based on X ⇥ Y— can be larger than the required tolerance.

If they are large enough, the compressed sets bX and bY will contain enough information to

properly interpolate K and the final error will be smaller than the required tolerance. This

is important, as the size of the Chebyshev grid for a given tolerance can be fairly large (as

indicated in the introduction, and one of the main motivations of this work), even though

the final rank is small.

As a sanity check, Figure 5.4c gives the relative error measured in the Frobenius norm

kK (X,Y )�K (X, bY )K ( bX, bY )�1K ( bX,Y )kF
kK (X,Y )kF

between K (X,Y ) and its interpolation as a function of the tolerance ".1 We see that both

lines are almost next to each other, meaning our approximation indeed reaches the required

tolerance. This is important as it means that one can e↵ectively control the accuracy.

Finally, Figure 5.4b also shows the resulting bX and bY . It is interesting to notice how

the selected points cluster near the close corners, as one could expect since this is the area

where the kernel is the least smooth.

We then consider results for the same Laplacian kernel K (x, y) = kx � yk�1
2 between

two plates in 3D (Figure 5.5b). We observe overall very similar results as for the previous

case in Figure 5.5a, where the initial rank r0 is significantly decreased to r1 while keeping

the resulting accuracy close to the required tolerance as Figure 5.5c shows. Finally, one

can see in Figure 5.5b the selected Chebyshev nodes. They again cluster in the areas where

smoothness is the worst, i.e., at the close edges of the plates.

1Choosing the Frobenius norm is not critical—very similar results are obtained in the 2-norm for instance.
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Figure 5.4: Results for the 2D-squares example. The rank r0 before compression is signifi-
cantly reduced to r1, very close to the true SVD or RRQR-rank.
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Figure 5.5: Results for the perpendicular plates example. The rank r0 before compression
is significantly reduced to r1, very close to the true SVD or RRQR-rank.
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5.5.2 Comparison with ACA and Random Sampling

We then compare our method with other standard algorithms for kernel matrix factorization.

In particular, we compare it with ACA [18] and ’Random CUR’ where one selects, at

random, pivots eX and eY and builds a factorization

K (X,Y ) ⇡ K (X, eY )K ( eX, eY )�1K ( eX,Y )

based on those. As we are interested in comparing the quality of the resulting sets of pivots

for a given rank, we compare those algorithms for sets X and Y with a variable distance

between each other, for a fixed tolerance (" = 10�8), and kernel (K (x, y) = kx � yk�1
2 ).

The geometry is two unit-length squares side-by-side with a variable distance between their

closest edges.

The comparison is done in the following way:

1. Given r1, build the ACA factorization of rank r1 and compute its relative error in

Frobenius norm with K (X,Y );

2. Given r1, build the random CUR factorization by sampling uniformly at random r1

points from X and Y to build eX, eY . Then, compute its relative error with K (X,Y ).

We then do so for sets of varying distance, and for a given distance, we repeat the experiment

25 times by building X and Y at random within the two squares. This allows us to study

the variance of the error and to collect some statistics.

Figure 5.6 gives the resulting errors in relative Frobenius norm for the three algorithms

using box-plots of the errors to show distributions. The rectangular boxes represent the

distributions from the 25% to the 75% quantiles, with the median in the center. The

thinner lines represent the complete distribution, except outliers depicted using large dots.

We observe that the ( bX, bY ) sets based on Chebyshev-SI are, for a common size r1, more

accurate than the Random or ACA sets. In addition, by design, they lead to more stable

factorizations (as they have very small variance in terms of accuracy) while ACA for instance

has a higher variance. We also see, as one may expect, that while ACA is still fairly stable

even when the clusters get close, random CUR starts having a higher and higher variance.

This is understandable as the kernel gets less and less smooth as the clusters get close.

Finally, we ran the same experiments with several other kernels (r�2, r�3, log(r),

exp(�r), exp(�r2)) and observed quantitatively very similar results.
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Figure 5.6: Comparison between di↵erent algorithms: Chebyshev-based SI, ACA and purely
random CUR decomposition. We consider two 2D squares of sides 1 with a variable distance
from each other; for each distance, we run Chebyshev-based SI and find the smallest sets
X,Y of rank r0 leading to a factorization using bX, bY of sizes r1 with relative error at most
10�8. Then r1 is used as an a priori rank for ACA and Random CUR. We randomize the
experiments by subsampling 500 points from a large 100⇥ 100 points grid in each square.
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5.5.3 Stability guarantees provided by RRQR

In Algorithm 5.1, in principle, any rank-revealing factorization providing pivots could be

used. In particular, ACA itself could be used. In this case, this is the HCAII (without

the weights) algorithm as described in [25]. However, ACA is only a heuristic: unlike

strong rank-revealing factorizations, it can’t always reveal the rank. In particular, it may

have issues when some parts of X and Y have strong interactions while others are weakly

coupled. To highlight this, consider the following example. It can be extended to many

other situations.

Let us use the rapidly decaying kernel

K (x, y) =
1

kx� yk32

and the situation depicted in Figure 5.7 with X =
h
X1 X2

i
and Y =

h
Y1 Y2

i
. We note

that, formally, X and Y are not well-separated.

Since K is rapidly decaying and X1 and Y2 (resp. X2 and Y1) are far away from each

other, the resulting matrix is nearly block diagonal, i.e.,

K (X,Y ) ⇡
"
K (X1, Y1) O(")

O(") K (X2, Y2)

#
(5.16)

for some small ". This is a challenging situation for ACA since it will need to sweep through

the initial block completely before considering the other one. In practice heuristics can help

alleviate the issue; see ACA+ [25] for instance. Those heuristics, however, do not come

with any guarantees. Strong RRQR, on the other hand, does not su↵er from this and picks

optimal nodes in each cluster from the start. It guarantees stability and convergence.

5.5.4 The need for weights

Another characteristic of Algorithm 5.1 is the presence of weights. We illustrate here why

this is necessary in general. Algorithm 5.1 uses X and Y both to select interpolation points

(the “columns” of the RRQR) and to evaluate the resulting error (the “rows”). Hence,

a non-uniform distribution of points leads to over- or under-estimated L2 error and to a

biased interpolation point selection. The weights, roughly equal to the (square root of) the

inverse points density, alleviate this e↵ect. This is a somewhat small e↵ect in the case of
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10 20 30 40 50 60

10�10

10�5

100

r1 = | bX| = |bY |

E
rr
or

RRQR
ACA

(b) Relative Frobenius error overX⇥Y using both RRQR

and ACA to select bX, bY of size r1 from X, Y using Al-
gorithm 5.1.

Figure 5.7: Failure of ACA. The geometry is such that the coupling between X1/Y1 and
X2/Y2 is much stronger than between X1/Y2 and X2/Y1. This leads to ACA not selecting
pivots properly. RRQR on the other hand has no issue and converges steadily.

Chebyshev nodes & weights as the weights have limited amplitudes.

To illustrate this phenomenon more dramatically, consider the situation depicted in

Figure 5.8. We define X and Y in the following way. Align two segments of N points,

separated by a small interval of length " = 1/N with N = 200. At the close extremities,

we insert 25N additional points inside small 3D spheres of diameter ". As a result, |X| =
|Y | = 26N = 5, 200, and X, Y are strongly non-uniform. We see that the small spheres

hold a large number of points in an interval of length N�1. As a result, their associated

weight should be proportional to N�1/2, while the weight for the points on the segments

should be proportional to 1. Then we apply Algorithm 5.1 with and without weights, and

evaluate the error on the segments using |X| = |Y | = 10, 000 equispaced points as a proxy

for the L2 error.

When using a rank r0 = 200, the CUR decomposition picks only 6 more points on the

segments (outside the spheres) for the weighted case compared to the unweighted. However,

this is enough to dramatically improve the accuracy, as Figure 5.8b shows. Overall, the pres-

ence of weights has a large e↵ect, and this shows that in general, one should appropriately

weigh the node matrix Kw to ensure maximum accuracy.



CHAPTER 5. SKELETONIZED INTERPOLATION 156

" " "

1 1

X Y

(a) The geometry. Kernel is 1/r,
" = 0.01.

0 50 100 150 200
10�8

10�3

102 No weights

With weights

r1 = | bX| = |bY |

E
rr
or

(b) Error with and without weights in Algo-
rithm 5.1.

Figure 5.8: Benchmark demonstrating the importance of using weights in the RRQR fac-
torization. The setup for the benchmark is described in the text. The blue curve on the
right panel, which uses weights, has a much improved accuracy.

5.5.5 Computational complexity

We finally study the computational complexity of the algorithm. It’s important to note

that two kinds of operations are involved: kernel evaluations and classical flops. As they

may potentially di↵er in cost, we keep those separated in the following analysis.

The cost of the various parts of the algorithm is the following :

• O
�
r20
�
kernel evaluations for the interpolation, i.e., the construction of X and Y and

the construction of K (X,Y )

• O
�
r20r1

�
flops for the RRQR over K (X,Y ) and K (X,Y )>

• O((m+ n)r1) kernel evaluations for computing K (X, bY ) and K ( bX,Y ), respectively

(with m = |X| and n = |Y |)

• O
�
r31
�
flops for K ( bX, bY )�1 (through, say, an LU factorization)

So the total complexity of building the three factors is O((m+ n)r1) kernel evaluations. If

m = n and r1 ⇡ r, the total complexity is

O((m+ n)r1) ⇡ O(nr)

Also note that the memory requirements are, clearly, of order O((m+ n)r1).

When applying this low-rank matrix on a given input vector f(Y ) 2 Rn, the cost is
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• O(r1n) flops for computing w1 = K ( bX,Y )f(Y )

• O
�
r21
�
flops for computing w2 = K ( bX, bY )�1w1 assuming a factorization of

K ( bX, bY ) has already been computed

• O(mr1) flops for computing w3 = K (X, bY )w2

So the total cost is

O((m+ n)r1) ⇡ O(nr)

flops if m = n and r1 ⇡ r.

To illustrate those results, Figure 5.9a shows, using the same setup as in the 2D square

example of Section 5.5.1, the time (in seconds) taken by our algorithm versus the time taken

by a naive algorithm that would first build K (X,Y ) and then perform a rank-revealing QR

on it. Time is given as a function of n for a fixed accuracy " = 10�8. One should not focus

on the absolute values of the timing but rather the asymptotic complexities. In this case,

the O(n) and O
�
n2
�
complexities clearly appear, and our algorithm scales much better than

the naive one (or that any algorithm that requires building the full matrix first). Note that

we observe no loss of accuracy as n grows. Also, note that the plateau at the beginning of

the Skeletonized Interpolation curve is all the overhead involved in selecting the Chebyshev

points X and Y using some heuristic. This is very implementation-dependent and could

be reduced significantly with a better or more problem-tailored algorithm. However, since

this is by design independent of X and Y (and, hence, n) it does not a↵ect the asymptotic

complexity.

Figure 5.9b shows the time as a function of the desired accuracy ", for a fixed number

of mesh points n = 105. Since the singular values of K (X,Y ) decay exponentially, one has

r ⇡ O
�
log

�
1
"

��
. The complexity of the algorithm being O(nr), we expect the time to be

proportional to log
�
1
"

�
. This is indeed what we observe.

Figure 5.9c depicts the time as a function of the rank r for a fixed accuracy " = 10�8 and

for a number of mesh points n = 105. In that case, to vary the rank and keep " fixed, we

change the geometry and observe the resulting rank. This is done by moving the top-right

square (see Figure 5.4b) towards the bottom-left one (keeping approximately one cluster

diameter between them) or away from it (up to 6 diameters). The rank displayed is the

rank obtained by the factorization. As expected, the algorithm scales linearly as a function

of r.
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Figure 5.9: Timings experiments on Skeletonized Interpolation
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5.6 Conclusions

In this work, we built a kernel matrix low-rank approximation based on Skeletonized inter-

polation. This can be seen as an optimal way to interpolate families of functions using a

custom basis.

This type of interpolation, by design, is always at least as good as polynomial interpola-

tion as it always requires the minimal number of basis functions for a given approximation

error. We proved in this chapter the asymptotic convergence of the scheme for kernels

exhibiting fast (i.e., faster than polynomial) decay of singular values. We also proved the

numerical stability of general Schur-complement types of formulas when using a backward

stable algorithm.

In practice, the algorithm exhibits a low computational complexity of O(nr) with small

constants and is very simple to use. Furthermore, the accuracy can be set a priori and in

practice, we observe nearly optimal convergence of the algorithm. Finally, the algorithm is

completely insensible to the mesh point distribution, leading to more stable sets of “pivots”

than Random Sampling or ACA.



Chapter 6

The Index of Invariance

As indicated on page vi, this chapter contains excerpts from [35]. Both authors were equally

involved in this work, and some of the results in this chapter were originally written by Rahul

Sarkar.

6.1 Introduction

In [89], the authors recently showed that x! (! � 0) defined as

x! := argmin
���(A⇤A+ !I)�

1

2A⇤(b�Ax)
���
2

s.t. x 2 Kk(A
⇤A,A⇤b), (6.1)

for some b 2 Rm and A 2 Rm⇥n full-rank are convex combinations of the LSQR iterates

[119] (equal to x0) and LSMR iterates [64] (equal to x! as ! ! 1). Kk(A⇤A,A⇤b) is the

kth Krylov subspace over which we minimize (6.1). This also shows that the set {x!|! � 0}
lies within a one-dimensional subspace.

For any full rank matrix A, A⇤A is SPD. Conversely, any SPD matrix B 2 Rn⇥n can be

decomposed as B = L⇤L. Hence, we deduce that the solutions {x0! | ! � 0} to the related

problem

x0! := argmin
���(B + !I)�

1

2 (b0 �Bx)
���
2

s.t. x 2 Kk(B, b0), (6.2)

also lie on a line between x0, the CG iterates [91], and x! as ! !1, the MINRES iterates

[118].

In this chapter, we generalize the previously mentioned one-dimensional a�ne subspace

160
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result by studying the minimization problem

xb,! := argminx2S k(A+ !I)�
1

2 (Ax� b)k2, (6.3)

with S an arbitrary (not only Krylov) p-dimensional subspace of Fn (F = R or F = C),
A a Hermitian invertible matrix, and !min := ��min(A) < ! 2 R, where �min(A) 2 R
is the smallest eigenvalue of A. For any subspace S of Fn, we also define IndA(S) :=

dim(S +AS)� dim(S), which we call the index of invariance of S with respect to A.

One can see that the role of IndA(S) is to capture how far S is from being A-invariant. If

IndA(S) = 0, then S is A-invariant. Non-invariant Krylov subspaces, for which IndA(S) =
1, are nearly invariant.

In the next section, we will show that xb,! := V
�
V ⇤AA�1

! AV
��1

V ⇤AA�1
! b (with V

an orthogonal basis for S and A! = A + !I). From this, it can be seen that, when S is

A�invariant, or equivalently when IndA(S) = 0, xb,! = xb,µ for all b and !, µ > !min.

Hence, the solutions belong to a 0�dimensional subspace. A natural question that arises is

then whether this pattern can be extended to the case where IndA(S) > 0, namely, do the

solutions belong to a IndA(S)-dimensional subspace. We already know that this is the case

in the particular case where S is a non-invariant Krylov subspace (for which IndA(S) = 1)

[89], and this chapter is dedicated to generalizing this result.

We prove several results:

(i) We study (Section 6.2) the index of invariance and show its relationship to a block

decomposition of A. This block decomposition can be seen as an extension of the

block Schur decomposition (for an invariant subspace) or Hessenberg reduction of a

matrix (for a Krylov subspace).

(ii) We show (Section 6.3) that there exists a subspace Y (depending on A and S but not b,

! or µ) such that for all b 2 Fn, !, µ > !min, xb,!�xb,µ 2 Y, where dim(Y)  IndA(S).
This immediately generalizes the result from [89], since IndA(S) = 1 for Krylov

subspaces. We give an expression for Y as a function of A and S. This result indicates
that the solutions to (6.3) belong to a much smaller space, in general, than S. And

the dimension of this space is directly related to how far S is from being A-invariant.

This shows that this problem has more structure than what can be seen at first sight.

(iii) We then study (Section 6.4) the tightness of the previously mentioned bound. First,
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we vary !, keeping b fixed. Let Xb := span({xb,! � xb,µ | !, µ > !min}).

- We show that the 0-dimensional case is special, as dim(Xb) = 0 for all b 2 Fn, if

and only if IndA(S) = 0.

- We show however that there exist A and S such that, for all b 2 Fn, dim(Xb) = 1,

while IndA(S) can be arbitrarily large. This indicates that the bound on dim(Y)

is not tight if one can only vary !, with b fixed.

Then, we continue by studying instead a related set X := span({xb,! � xb,µ | b 2
Fn,!, µ > !min}), where we find some su�cient conditions on A and S ensuring

dim(X ) = IndA(S). In particular, if A is SPD, then we prove that dim(X ) =

IndA(S). This shows that the previously derived bound on dim(Y) is now tight

if one is free to vary both ! and b in xb,!.

6.2 Preliminaries

6.2.1 Notations

Table 6.1 summarizes the notations used throughout this chapter. We separate general

notations (top) and notations specific to the problem under consideration (bottom).

6.2.2 Index of invariance

We begin by defining the index of invariance of a matrix A with respect to a subspace S.

Definition 6.1. Let A 2 Fn⇥n and S ✓ Fn a subspace. We define the index of invariance

of S with respect to A as IndA(S) := dim(S +AS)� dim(S).

If A 2 Fn⇥n, a subspace S ✓ Fn is called an invariant subspace of A or simply

A�invariant if AS ✓ S. Thus it can be seen from Definition 6.1 that Ind(S, A) = 0

if and only if S is A�invariant. Another interesting example is that of a Krylov subspace

Kk(A, b) that is not A�invariant, in which case it can be verified that Ind(Kk(A, b), A) = 1.

We study several interesting properties of the index of invariance below in Section 6.2.4.

6.2.3 Problem statement

In this subsection, after we formally state the problem in the next paragraph, we will define

a few quantities that will be used in its analysis and prove some facts.
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F R or C, depending on the context
Semi-unitary A matrix A 2 Fm⇥n such that A⇤A = I
Sym(n) The set of Hermitian matrices
P+(n) The set of SPD matrices
GL(n) The set of invertible matrices
GrF(p, n) The set of p-dimensional subspaces of Fn

�min(A) With A 2 Sym(n), the smallest eigenvalue of A
AS With A 2 Fn⇥n and S ✓ Fn a subspace, the subspace {Ax | x 2 S}
S? With S ✓ Fn a subspace, the orthogonal complement of S
S + S 0 With S, S0 ✓ Fn subspaces, the subspace {x+ x0 | x 2 S, x0 2 S 0}
S � S 0 With S, S0 ✓ Fn subspaces and S \ S 0 = {0}, a direct sum, equal to

S + S 0

Kk(A, b) With A 2 Fn⇥n and b 2 Fn, the Krylov subspace,
span({b, Ab, . . . , Ak�1b})

A A Hermitian, invertible matrix
A! Equal to A+ !I
S A p�dimensional subspace of Fn

p The dimension of S
!min Equal to ��min(A)
IndA(S) Equal to dim(S +AS)� dim(S), also denoted q
q Equal to IndA(S)
xb,! The solution to minx2S k(A+ !I)�1/2(b�Ax)k2
Xb span({xb,! � xb,µ | !, µ > !min})
X span({xb,! � xb,µ | b 2 Fn,!, µ > !min})
V , V 0, V 00 Orthogonal basis to S, S? \ (S +AS) and (S +AS)?.

⇥
V V 0 V 00

⇤
is

square and unitary.
c, c0, c00 Equal to V ⇤b, V 0⇤b, V 00⇤b
T Equal to V ⇤AV
B Equal to V 0⇤AV

H Equal to


T
B

�

N A basis for the nullspace of H
db,!,µ Equal to V ⇤(xb,! � xb,µ)
DA(!) Equal to V (V ⇤AA�1

! AV )�1V ⇤AA�1
!

@DA(!, µ) Equal to DA(!)�DA(µ)

Table 6.1: Notations used throughout this chapter. Top shows general notations; bottom
shows notations specific to our problem as defined in Section 6.2.3
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Let F be C or R. Let A 2 Sym(n) \ GL(n) be a Hermitian invertible matrix, S 2
GrF(p, n) be a p-dimensional subspace of Fn of dimension 1  p  n, and let !min :=

��min(A). For any b 2 Fn and ! 2 (!min,1), we define xb,! to be the solution to the

following minimization problem (the fact that this minimizer exists and is unique is proved

in Lemma 6.1):

xb,! := argminx2S k(A+ !I)�
1

2 (b�Ax)k2, (6.4)

and in addition, we also define two subspaces

Xb := span({xb,! � xb,µ | !, µ > !min})

X := span({xb,! � xb,µ | b 2 Fn,!, µ > !min})
(6.5)

Intuitively, Xb is the linear subspace containing all solutions for a fixed b, varying ! (up to

a constant term). X contains all solutions as one vary b and !.

We seek to resolve the following questions: what is the maximum dimension of Xb and

X ? Conversely, does the dimensions of Xb and X say anything about the quantity IndA(S)?

Characterizing the solution

We start by giving an explicit solution for xb,!.

Lemma 6.1. Let A 2 Sym(n) \ GL(n), b 2 Fn, !min = ��min(A), and S 2 GrF(p, n).

Then for any ! 2 (!min,1), the problem

argminx2S kA�1/2
! (b�Ax)k2 (6.6)

has a unique solution xb,! given by

xb,! := V
�
V ⇤AA�1

! AV
��1

V ⇤AA�1
! b (6.7)

where A! := A+ !I, and V 2 Fn⇥p is any full rank matrix whose columns span S. (6.7) is

well defined as it is independent of the choice of V .

The proof of this lemma is given in Appendix A.2, and we simply note here that ! > !min

ensures that A! 2 P+(n). Because of the freedom in the choice of V in Lemma 6.1, from

now on unless otherwise specified, we will always assume that V is semi-unitary.
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The expression for xb,! will be studied in some detail in this chapter, and so to make

things easier we make the following definition:

Definition 6.2. Using the notation and assumptions of Lemma 6.1, we define two maps

DA : (!min,1)! Fn⇥n, and @DA : (!min,1)⇥ (!min,1)! Fn⇥n as

DA(!) = V (V ⇤AA�1
! AV )�1V ⇤AA�1

! , @DA(!, µ) = DA(!)�DA(µ). (6.8)

For any !, µ 2 (!min,1), DA(!) and @DA(!, µ) represent linear maps Fn ! S, and are

independent of the choice of V (the proof of independence is essentially contained in the

proof of Lemma 6.1). With those definitions, note that xb,! = DA(!)b and xb,! � xb,µ =

@DA(!, µ)b.

Motivation

In order to gain some motivation about why we study the problem, we start with the

following observation, that holds under the assumptions mentioned above.

Lemma 6.2. If S is A�invariant, xb,! given by (6.7) is independent of !.

Proof. Since A is invertible and IndA(S) = 0, AS = S; so applying the spectral theorem to

the restriction map A|S (which is Hermitian because A is), we can conclude that S is spanned

by eigenvectors of A. Thus, we can choose V such that AV = V ⇤, where the columns of V

are eigenvectors of A, and ⇤ is a diagonal matrix with real entries (the eigenvalues). Thus for

any ! 2 R, A!V = V (⇤+!I), while the definition of A�1
! shows that A�1

! V = V (⇤+!I)�1

for all ! 2 (!min,1), where the bounds on ! ensure that A! 2 P+(n) so that A�1
! is

well-defined. Plugging into (6.7) gives xb,! = V
�
⇤(⇤+ !I)�1⇤

��1
⇤(⇤ + !I)�1V ⇤b =

V ⇤�1V ⇤b.

Lemma 6.2 suggests that when IndA(S) = 0, dim(Xb) = 0 for all b 2 Fn. A natural

question that arises then is what happens when IndA(S) > 0. As indicated in Section 6.1,

a simple consequence of the results in [89] is that in the case F = R, if B 2 Rn⇥n is an

SPD matrix, b 2 Rn, and S = Kk(B, b) is a real Krylov subspace, the set of solutions

{xb,! | ! � 0} with xb,! defined as the solution to (6.2) belong to a 1-dimensional a�ne

subspace. But for a Krylov subspace S = Kk(A, b) that is not A�invariant, IndA(S) = 1.

Based on these two known results, we are faced with the possibility that the conjecture

dim(Xb)  IndA(S) for all b 2 Fn, might be true for F = C or R.
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Figure 6.1: Illustration of the low dimensionality of the a�ne subspace Xb =
A↵ ({xb,! | ! � 0}). Left plots show the singular values of the centered matrix Y com-
puted as Yij = Xij�K�1P

k Xik where X = [xb,!1
. . . xb,!K ]. A sharp drop in the singular

values indicates that the set {xb,!j}Kj=1 lives in a low dimensional a�ne subspace. Right

plots show the projection of {xb,!j}Kj=1 over that low dimensional subspace.

We now describe a numerical experiment that also illustrates and confirms our intuition.

Working over F = R, given a positive matrix A 2 RN⇥N (built as the finite di↵erence

discretization with a 5-points stencil of a Poisson equation on a square domain, with N =

529), we create two experiments by building S as the sum of two (resp. three) real Krylov

subspaces, i.e. K11(A, b1)+K6(A, b2) (resp. K11(A, c1)+K6(A, c2)+K4(A, c3)). The vectors

b1, b2, c1, c2, c3 2 RN were chosen as random Gaussian vectors, but such that IndA(S) = 2

(resp. 3), and dim(S) = 17 (resp. 21). The vector b 2 RN was also initialized as a random

Gaussian vector.

To check the dimension of the solution set Xb, we then build a matrixX = [xb,!1
. . . xb,!K ]

2 RN⇥K , with the columns of X computed using (6.7) and K = 200, and where !j =
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10�3+6(j�1)/(K�1), for all 1  j  K. We then perform a principal component analysis on

X: we compute and subtract the mean across each N dimensions, building Y such that

Yij = Xij � K�1P
k Xik, for all 1  i  N, 1  j  K. Figure 6.1a (resp. Figure 6.1c)

shows the singular values of Y in the IndA(S) = 2 (resp. IndA(S) = 3) cases. The sharp

drop at the third (resp. fourth) singular value indicates that Y is rank two (resp. three),

which indicates that Xb may belong to a low dimensional a�ne subspace of dimension 2

(resp. 3). Figure 6.1b (resp. Figure 6.1d) shows the solution set {xb,!j}Kj=1 projected over

the leading two (resp. three) eigenvectors of Y for the two experiments.

6.2.4 Properties of the index of invariance

We now prove some facts about the index of invariance, defined previously in Definition 6.1.

Additional facts can be found in Appendix A.1. We start with two lemmas that characterize

the relationship between the index of invariance and bases of the subspaces involved in its

definition. Those results lead to the definition of a precise block-decomposition of A, critical

to the results of this chapter.

This first result shows that there exist semi-unitary matrices V , spanning S, and V 0,

spanning S +AS together with V . The proof is elementary and provided in Appendix A.1.

Lemma 6.3. Let A 2 Fn⇥n, S 2 GrF(p, n) and q = IndA(S). Then

(i) IndA(S)  min{dim(S), n� dim(S)}  bn/2c.

(ii) There exists semi-unitary V 2 Fn⇥p such that Range(V ) = S, and there exists V 0 2
Fn⇥q such that

h
V V 0

i
is semi-unitary, Range(

h
V V 0

i
) = S+AS, and Range(V 0) =

S? \ (S +AS).

This second result now connects V and V 0 to A and IndA(S).

Lemma 6.4. Let A 2 Fn⇥n, S 2 GrF(p, n). Let
h
V V 0

i
be semi-unitary such that

Range(V ) = S, and Range(
h
V V 0

i
) = S +AS. The following are equivalent:

(i) IndA(S) = q.

(ii) There exist T 2 Fp⇥p, B 2 Fq⇥p and rank(B) = q, such that AV = V T + V 0B, and

T,B are uniquely determined by A, V, V 0.



CHAPTER 6. THE INDEX OF INVARIANCE 168

Proof. Notice that from Lemma 6.3(ii), V and V 0 always exist. Let IndA(S) = q. We

first prove (i)!(ii). Since Range(AV ) = AS ✓ S + AS = Range(
h
V V 0

i
), we have

AV = V T +V 0B, for some T 2 Fp⇥p and B 2 Fq⇥p, which are uniquely determined becauseh
V V 0

i
is full rank. From Lemma 6.3(i) we have q  p. Now assume B is not of full

rank q. Then one can decompose B (such as using the singular value decomposition) as

B = UW , where U 2 Fq⇥r, W 2 Fr⇥p with r < q. Then AV = V T + (V 0U)W from

which it follows that Range(AV ) ✓ Range(
h
V V 0U

i
), where rank(V 0U)  r < q. But

S = Range(V ), and so S +AS ✓ Range(
h
V V 0U

i
) = S +Range(V 0U). This implies that

dim(S +AS)  dim(S) + r, which is a contradiction.

Now suppose (ii) holds. Since S = Range(V ), and AS = Range(AV ), by assumption it

follows that S+AS = {V x+(V T +V 0B)y | x, y 2 Fp} = {V (x+Ty)+V 0By | x, y 2 Fp} =

{V w + V 0z | w 2 Fp, z 2 Fq} = Range(
h
V V 0

i
) (the second last equality follows because

B is full rank). Since
h
V V 0

i
is semi-unitary, we conclude that dim(S + AS) = p + q =

dim(S) + q.

Lemma 6.4 has an important consequence that we state next, which will play a key role

later in the proof of the main theorem of this chapter.

Corollary 6.1. Let A 2 Fn⇥n, S 2 GrF(p, n), and IndA(S) = q. Let V 2 Fn⇥p, V 0 2 Fn⇥q,

and V 00 2 Fn⇥(n�p�q) be such that
h
V V 0 V 00

i
is unitary, S = Range(V ), and S +AS =

Range(
h
V V 0

i
). Then A has the following block decomposition

p q
p

q

2

664

V ⇤

V 0⇤

V 00⇤

3

775A
h
V V 0 V 00

i
=

2

664

T P Q

B C R

0 D E

3

775 , (6.9)

where T 2 Fp⇥p, C 2 Fq⇥q, E 2 F(n�p�q)⇥(n�p�q), with the shapes of the other blocks being

compatible, and B is of full rank q. Additionally

(i) If A 2 GL(n), then H :=

"
T

B

#
is of full rank p.

(ii) If A 2 Sym(n), one has P = B⇤, R = D⇤, Q = 0, and T,C,E Hermitian.

Proof. The decomposition follows from Lemma 6.4 (which also gives rank(B) = q), by

noting that V 00⇤(AV ) = 0, using the unitarity of
h
V V 0 V 00

i
and AV = V T + V 0B. For
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(i), let Ā be the right-hand-side of (6.9); so A 2 GL(n) implies Ā 2 GL(n), which means

the first p columns of Ā are linearly independent. But if rank(H) < p, the first p columns

of Ā are linearly dependent, giving a contradiction. For (ii), note that when A 2 Sym(n),

both sides of (6.9) are Hermitian, and so the conclusion follows.

When A 2 Sym(n), the decomposition given by Corollary 6.1 will be called the tridiag-

onal block decomposition. Note that (i) this decomposition exists regardless of whether A

is invertible or SPD, (ii) even if A is invertible, the diagonal blocks T , C and E need not

be, (iii) if however A is SPD, then T , C and E are in fact SPD, but D need not be full

rank1. We also note that this decomposition is similar to the block Lanczos decomposition

[75, page 567] as used in block Krylov methods (amongst many, [117, 137, 136, 55]).

It is worth noting some special cases. Consider the case when S is A�invariant, and
A 2 Sym(n). Then IndA(S) = 0, and so in the tridiagonal block decomposition (6.9), V 0

has 0 columns (i.e., q = 0), and we can simply write

"
V ⇤

V 00⇤

#
A
h
V V 00

i
=

"
T 0

0 E

#
. (6.10)

This is the block-diagonal Schur decomposition of a Hermitian matrix for a given invariant

subspace [75, page 443]. Consider similarly the case when S = Kp(A, b), such that S is

not A�invariant, and so IndA(S) = 1. We then know that B 2 F1⇥p is rank-1. In fact,

if we build V by the Arnoldi process (that is the first k columns of V span Kk(A, b) for

1  k  p), then B = V 0⇤AV = �e⇤p, where � 6= 0 with (ep)i = 0 for i < p and (ep)p = 1.

6.3 Proof of the main result

The main result of this chapter is the following theorem which we prove after. For com-

pleteness, we also redefine every quantity needed.

Theorem 6.1. Let F denote the field C or R. Let A 2 Sym(n) \ GL(n) be an n ⇥ n

invertible Hermitian matrix over F, S ✓ Fn a p-dimensional subspace, and b 2 Fn. Define

!min := ��min(A), q := dim(S +AS)� dim(S), and for all ! 2 (!min,1)

xb,! := argminx2S k(A+ !I)�
1

2 (Ax� b)k2.
1For example, if IndA(S +AS) = 0 (i.e., S +AS is invariant), then D = 0.
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Then there exists a q-dimensional subspace Y ✓ Fn, independent of b, such that xb,!�xb,µ 2
Y for all !, µ 2 (!min,1). If V 2 Fn⇥p, V 0 2 Fn⇥q are chosen such that

h
V V 0

i
is semi-

unitary, Range(V ) = S, and Range(
h
V V 0

i
) = S + AS, then Y = Range(V (H⇤H)�1B⇤)

(not depending on the choice of V, V 0), where H⇤ =
h
T B⇤

i
, with T = V ⇤AV , and B =

V 0⇤AV .

Let IndA(S) = q. Using the tridiagonal block decomposition (Corollary 6.1), we will

choose V 0 2 Fn⇥q, and V 00 2 Fn⇥(n�p�q) such that
h
V V 0 V 00

i
is unitary, S + AS =

Range(
h
V V 0

i
), and

2

664

V ⇤

V 0⇤

V 00⇤

3

775A
h
V V 0 V 00

i
=

2

664

T B⇤ 0

B C D⇤

0 D E

3

775 , (6.11)

where T 2 Fp⇥p, C 2 Fq⇥q, E 2 F(n�p�q)⇥(n�p�q) are all Hermitian, and the shapes of the

other blocks are compatible, and we denote H :=

"
T

B

#
2 F(p+q)⇥p which is of full rank p.

We let b = V c+ V 0c0 + V 00c00, for some c 2 Fp, c0 2 Fq, and c00 2 Fn�p�q, the representation

being unique for the given choice of V, V 0, and V 00, and existing for any b 2 Fn, because

Range(
h
V V 0 V 00

i
) = Fn.

To simplify the presentation of this section, we make a few observations. Let A! :=

A+ !I. Using (6.11) and the unitarity of
h
V V 0 V 00

i
, we obtain

2

664

V ⇤

V 0⇤

V 00⇤

3

775A!

h
V V 0 V 00

i
=

2

664

T + !I B⇤ 0

B C + !I D⇤

0 D E + !I

3

775 , (6.12)

and since A! 2 P+(n) for ! > !min, the right-hand side of (6.12) is also SPD. Thus in

particular E + !I is SPD, which allows us to define F! 2 Fq⇥q and G! 2 F(p+q)⇥(p+q) for

any ! 2 (!min,1), as follows

F! := D⇤(E + !I)�1D, and G! :=

"
T B⇤

B C � F!

#
+ !I. (6.13)

The positivity of E + !I directly ensures that F! 2 P+(q), while G! 2 P+(p + q) as it is
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the Schur complement of the E+!I block of the right-hand side of (6.12). Finally, we note

a couple of key identities that follow from the 2-by-2 block matrix inversion formula [110],

whenever ! > !min:

G�1
! =

"
V ⇤

V 0⇤

#
A�1

!

h
V V 0

i
,

�G�1
!

"
0

D⇤(E + !I)�1

#
=

"
V ⇤

V 0⇤

#
A�1

! V 00.

(6.14)

We are now ready to prove the following lemma, which is the first step in proving Theo-

rem 6.1.

Lemma 6.5. Define db,!,µ := V ⇤(xb,! � xb,µ) 2 Fp, whenever !, µ 2 (!min,1), and let

N 2 F(p+q)⇥q be any full rank matrix2 whose columns span the nullspace of H⇤. Also define

zb,!,µ(t) := D⇤(E + !I)�1c00 �D⇤(E + µI)�1c00 +
h
B C � Fµ

i
Nt. (6.15)

Then there exists a unique d 2 Fp and t 2 Fq satisfying the system of equations

8
>>>>>>><

>>>>>>>:

H⇤G�1
!

0

@Hd+ µNt+

2

4 0

zb,!,µ(t)

3

5

1

A = 0

Nt = G�1
µ

�
H(H⇤G�1

µ H)�1H⇤G�1
µ � I

�
2

4 c

c0 �D⇤(E + µI)�1c00

3

5 ,

(6.16)

where the solution d satisfies d = db,!,µ.

Proof. To show uniqueness, suppose (d, t), (d0, t0) 2 Fp ⇥ Fq are two solutions of (6.16).

Then from the second equation we get N(t� t0) = 0; but since N is of full rank q, we have

t = t0. The first equation then gives H⇤G�1
! H(d � d0) = 0. Now as G! 2 P+(p + q), we

have H⇤G�1
! H 2 P+(p), which gives d = d0 proving uniqueness.

To prove the existence of a solution to (6.16), we start by expressing db,!,µ using (6.7),

and obtain db,!,µ = (V ⇤AA�1
! AV )�1V ⇤AA�1

! b � (V ⇤AA�1
µ AV )�1V ⇤AA�1

µ b, which after

multiplying both sides by V ⇤AA�1
! AV and rearranging is equivalent to

V ⇤AA�1
!

�
AV db,!,µ � b+AV (V ⇤AA�1

µ AV )�1V ⇤AA�1
µ b

 
= 0. (6.17)

2Existence of N is guaranteed as rank(H⇤) = rank(H) = p, hence the nullspace of H⇤ has dimension q.
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Next observe that as A is Hermitian, we can express V ⇤AA�1
µ AV and V ⇤AA�1

µ b, as (AV )⇤

A�1
µ (AV ) and (AV )⇤A�1

µ b respectively, and so firstly using the fact that AV =
h
V V 0

i
H

from (6.12), and secondly using the identities in (6.14) one obtains

V ⇤AA�1
µ AV = H⇤G�1

µ H, V ⇤AA�1
µ b = H⇤G�1

µ

"
c

c0 �D⇤(E + µI)�1c00

#
, (6.18)

with similar expressions holding for µ replaced by !. Using (6.18) one can then equivalently

write (6.17) as

H⇤G�1
!

(
Hdb,!,µ +

"
0

D⇤(E + !I)�1c00 �D⇤(E + µI)�1c00

#)

+H⇤G�1
!

⇣
H
�
H⇤G�1

µ H
��1

H⇤G�1
µ � I

⌘" c

c0 �D⇤(E + µI)�1c00

#
= 0.

(6.19)

Now let s :=
⇣
H
�
H⇤G�1

µ H
��1

H⇤G�1
µ � I

⌘" c

c0 �D⇤(E + µI)�1c00

#
. Then it follows that

H⇤G�1
µ s = 0, or equivalently G�1

µ s = Nt for some t 2 Fq, as the columns of N form a basis

for the nullspace of H⇤. But this then implies that

s = GµNt = µNt+

2

4 0h
B C � Fµ

i
Nt

3

5 , (6.20)

using the fact that
h
T B⇤

i
N = H⇤N = 0. Plugging s back into (6.19) then shows that

(db,!,µ, t) is a solution of (6.16), finishing the proof.

We now prove this chapter’s main result, Theorem 6.1.

Proof of Theorem 6.1. From Lemma 6.5 (db,!,µ, t) is the unique solution of (6.16), for some

t 2 Fq. Hence there exist t0 2 Fq such that

Hdb,!,µ + µNt+

"
0

zb,!,µ(t)

#
= G!Nt0 = !Nt0 +

2

4 0h
B C � F!

i
Nt0

3

5 , (6.21)

where we used the fact that H⇤N =
h
T B⇤

i
N = 0. So Hdb,!,µ = N(!t0 � µt) +
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"
0

z0b,!,µ(t, t
0)

#
where z0b,!,µ(t, t

0) =
h
B C � F!

i
Nt0� zb,!,µ(t). Since H is full column rank,

H⇤H is invertible and H⇤Hdb,!,µ = H⇤

"
0

z0b,!,µ(t, t
0)

#
, and we conclude that

db,!,µ = (H⇤H)�1B⇤z0b,!,µ(t, t
0). (6.22)

Noticing that xb,!, xb,µ 2 S, we have V db,!,µ = xb,!�xb,µ, and (6.22) then gives xb,!�xb,µ 2
Range(V (H⇤H)�1B⇤), for all !, µ > !min and b 2 Fn. Since B⇤ has full column rank q, and

V (H⇤H)�1 has full column rank p, V (H⇤H)�1B⇤ has full column rank q3, and so defining

Y := Range(V (H⇤H)�1B⇤) gives dim(Y) = q.

The theorem is proved if we can show that Y does not depend on the choice of V, V 0.

So suppose that V 2 Fn⇥p, V 0 2 Fn⇥q is a di↵erent choice of semi-unitary matrices such

that
h
V V 0

i
is semi-unitary, Range(V ) = S, and Range(

h
V V 0

i
) = S + AS. Let T :=

V
⇤
AV , B

⇤
:= V

⇤
AV 0, and H

⇤
:=

h
T B

⇤
i
be analogously defined. Then there exists

U 2 U(p) and U 0 2 U(q), such that V = V U and V 0 = V 0U 0. A simple computation

then shows that V (H⇤H)�1B⇤ = (V (H
⇤
H)�1B

⇤
)U 0, and as U 0 is unitary this shows that

Range(V (H⇤H)�1B⇤) = Range(V (H
⇤
H)�1B

⇤
).

This proof immediately gives us bounds on the dimensions of the a�ne subspace Xb and

the subspace X , as stated in the next corollary.

Corollary 6.2. The sets Xb and X introduced in (6.5) satisfy

(i) For all b 2 Fn, Xb ✓ Range(V (H⇤H)�1B⇤) and dim(Xb)  IndA(S).

(ii) X ✓ Range(V (H⇤H)�1B⇤) and dim(X )  IndA(S).

Proof. Both (i) and (ii) follow by applying Theorem 6.1, because

xb,! � xb,µ 2 Range(V (H⇤H)�1B⇤),

for all !, µ > !min, and for all b 2 Fn.

As mentioned in Section 6.1, the particular case, when F = R and c = b, follows from

the results proved in [89]. One can ask whether the bounds in Corollary 6.2 are tight, or

3Multiplication of a F valued matrix from the left by a full column rank matrix does not change its rank.
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whether they can be improved. This is the topic of the next section.

6.4 Tightness of the bounds

In this section, we explore the converse of the main theorem. In Section 6.4.1, we explore

how tight is the bound dim(Xb)  IndA(S) for fixed b 2 Fn. In Section 6.4.2 we formulate

some su�cient conditions under which dim(X ) = IndA(S).

6.4.1 Bounds on dim(Xb)

The result that motivated this section is the following observation.

Lemma 6.6. The following conditions are equivalent:

(i) Ind(A,S) = 0.

(ii) For all b 2 Fn and for all µ,! > !min, xb,µ = xb,!.

(iii) There exists distinct µ,! > !min such that for all b 2 Fn, xb,µ = xb,!.

Proof. (i) ! (ii) was proved in Lemma 6.2, and (ii) ! (iii) is straightforward.

We prove (iii) ! (i). If S = Fn we have Ind(A,Fn) = 0, so assume that S 6= Fn.

Pick any b 2 A!A�1S?. Then AA�1
! b 2 S?, and so V ⇤AA�1

! b = 0. Since xb,µ = xb,!, it

follows using (6.7) that V ⇤AA�1
µ b = 0, or AA�1

µ b 2 S?. Now AA�1
! : A!A�1S? ! S? is

an isomorphism as both A,A! 2 GL(n), and notice that AA�1
µ = A�1

µ A!(AA�1
! ) using the

fact that A,Aµ, A! 2 Sym(n); so we have in fact proved that Ind(A�1
µ A!,S?) = 0. Finally

notice that A�1
µ A! = I+(!�µ)A�1

µ , which means that for any x 2 S?, x+(!�µ)A�1
µ x 2

S?, and so A�1
µ x 2 S? (as µ 6= !). Thus we conclude that Ind(A�1

µ ,S?) = 0, and by

applying Lemma A.2(iii), (iv), and (i) successively, we get Ind(A,S) = 0.

The equivalence of the conditions (i), (ii), and (iii) of Lemma 6.6, leads to the following

corollary.

Corollary 6.3. The following statements are true.

(i) IndA(S) = 0 if and only if dim(X ) = 0.

(ii) IndA(S) = 0 if and only if dim(Xb) = 0, for all b 2 Fn.
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(iii) The map DA is a constant map if IndA(S) = 0, and injective otherwise.

Proof. Both (i) and (ii) follow from Lemma 6.6. For (iii), Lemma 6.2 implies that DA is a

constant map if IndA(S) = 0, while if IndA(S) > 0 and DA is not injective, there exists

distinct µ,! > !min, such that DA(µ) = DA(!) implying that xb,µ = xb,! for all b 2 Fn,

thereby contradicting Lemma 6.6.

An interesting consequence of Corollary 6.3 is that when IndA(S) = 1, there must exist

b 2 Fn such that dim(Xb) = 1, since we know that dim(Xb)  1 by Theorem 6.1. One

can then ask whether this pattern holds in general, that is if IndA(S) � 1, whether there

always exists b 2 Fn such that dim(Xb) = IndA(S). However, this turns out to not be true

as shown by the following example, which shows that one can have cases where dim(Xb)  1

for all b 2 Fn, even though IndA(S) is arbitrarily large.

Example 6.1. For ↵ 2 R \ {1,�1}, let p = q � 1, n = p+ q and consider

A =

"
↵I I

I ↵I

#
2 Fn⇥n (6.23)

with S = span({e1, . . . , ep}), where ek 2 Fn is given by (ek)i = �ik. Notice that det(A) =

(↵2 � 1)p, so A 2 GL(n). Furthermore, for ↵ > 1, A 2 P+(n) since its eigenvalues are

given by ↵ ± 1. With k(↵,!) := (↵ + !)2 � 1 (note that !min = 1 � ↵, so k(↵,!) > 0 for

! > !min), we find

A�1
! = k(↵,!)�1

"
(↵+ !)I �I
�I (↵+ !)I

#
,

AA�1
! A = k(↵,!)�1

"
(↵3 + ↵2! � ↵+ !)I (↵2 + 2↵! � 1)I

(↵2 + 2↵! � 1)I (↵3 + ↵2! � ↵+ !)I

#
.

(6.24)

Since AA�1
! A 2 P+(p), first note that ↵3 + ↵2! � ↵ + ! > 0 for ! > !min, and it follows

by choosing V ⇤ =
h
I 0

i
, and V 0⇤ =

h
0 I

i
that

V ⇤xb,! =
(↵2 + ↵! � 1)c+ !c0

↵3 + ↵2! � ↵+ !
,

db,!,µ = V ⇤(xb,! � xb,µ) =
(µ� !)(↵2 � 1)(c� ↵c0)

(↵3 + ↵2! � ↵+ !)(↵3 + ↵2µ� ↵+ µ)
.

(6.25)
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It is clear that db,!,µ 2 Range(c � ↵c0), so dim(Xb)  1 (equality holds if and only if

c� ↵c0 6= 0), while IndA(S) = p using Lemma A.1.

6.4.2 Conditions when dim(X ) = IndA(S)

The purpose of this subsection is to provide su�cient conditions under which dim(X ) =

IndA(S). From Corollary 6.3(ii) we already know that dim(X ) = 0 if and only if IndA(S) =
0, so it follows that dim(X ) � 1 implies IndA(S) � 1. Thus, throughout this subsection,

we will assume that q � dim(X ) � 1.

We start with the observation that a su�cient condition to ensure dim(X ) = IndA(S) =
q is that for every y 2 Y (with Y = Range(V (H⇤H)�1B⇤) as defined in Theorem 6.1),

there exist b 2 Fn and !, µ > !min, such that y = xb,! � xb,µ, or equivalently V ⇤y =

V ⇤(xb,! � xb,µ) = db,!,µ. This is because dim(Y) = q, and X ✓ Y . But since Y =

Range(V (H⇤H)�1B⇤), this is equivalent to showing that for every u 2 Fq, there exist

b,!, µ such that db,!,µ = (H⇤H)�1B⇤u. For convenience, let us define for all ! > !min,

J! 2 F(p+q)⇥(p+q) and E! 2 F(n�p�q)⇥(n�p�q) as

J! := G�1
!

�
H(H⇤G�1

! H)�1H⇤G�1
! � I

�
, E! := E + !I. (6.26)

Let N be defined as in Lemma 6.5, and suppose N =

"
N1

N2

#
be a partitioning of N , where

N1 2 Fp⇥q and N2 2 Fq⇥q. Then by Lemma 6.5 and the quantities defined therein, we

deduce the following su�cient condition:

Lemma 6.7. Let u 2 Fq be fixed. If there exists b 2 Fn, !, µ 2 (!min,1), and t, t0 2 Fq

satisfying the system

8
>>>>>>><

>>>>>>>:

T (H⇤H)�1B⇤u = N1(!t0 � µt)

B(H⇤H)�1B⇤u = N2(!t0 � µt) + z0b,!,µ(t, t
0)

Nt = Jµ

2

4 c

c0 �D⇤E�1
µ c00

3

5 ,

(6.27)

with z0b,!,µ(t, t
0) =

h
B C � F!

i
Nt0 � zb,!,µ(t) (see (6.15)), then db,!,µ = (H⇤H)�1B⇤u.

Conversely, for fixed (b,!, µ), if db,!,µ = (H⇤H)�1B⇤u, then there exists (t, t0) satisfying

(6.27). Finally, if a (b,!, µ, t, t0) exists for every u 2 Fq solving (6.27), then dim(X ) = q.
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Proof. Combining the first two equations of (6.27) givesH(H⇤H)�1B⇤u+µNt+

"
0

zb,!,µ(t)

#
=

G!Nt0. Since N is a basis for the nullspace of H⇤, this is equivalent to the first equation

of (6.16) with d = (H⇤H)�1B⇤u. Now let u 2 Fq be fixed. By applying Lemma 6.5 we

find db,!,µ = (H⇤H)�1B⇤u. For the converse, suppose db,!,µ = (H⇤H)�1B⇤u. Then by

Lemma 6.5, t exists such that (6.16) is satisfied. Since N is a basis for the nullspace of

H⇤, there exist t0 such that Hd + µNt +

"
0

zb,!,µ(t)

#
= G!Nt0 and the conclusion follows.

Finally, we have already argued the last statement in the paragraph immediately before

this lemma.

Because of this result, our task now reduces to finding conditions that guarantee solu-

tions to (6.27). It turns out that the first and third equations of (6.27) pose no obstruc-

tions, which we show in the next lemma, and recall that we denote c = V ⇤b, c0 = V 0⇤b and

c00 = V 00⇤b. So a choice of (c, c0, c00) uniquely defines b, and vice-versa.

Lemma 6.8. The following statements are true:

(i) For every u 2 Fq, there exists a unique t00 2 Fq, such that T (H⇤H)�1B⇤u = N1t00,

showing that the first equation of (6.27) also admits a solution for some !, µ > !min,

and t, t0 2 Fq.

(ii) For every µ > !min, t 2 Fq, and c00 2 Fn�p�q, there exists c 2 Fp, and c0 2 Fq solving

the third equation of (6.27). Conversely for every µ > !min, and b 2 Fn, there exists

a unique t 2 Fq solving the third equation of (6.27).

Proof. (i) This proof relies on the results of Appendix A.3. Fix u 2 Fq. Firstly,

it has already been argued in Corollary A.2(i) that rank (N1) = q, so it follows

that t00 is unique, if it exists. Let u0 = (H⇤H)�1B⇤u, and so (H⇤H)u0 = (T 2 +

B⇤B)u0 = B⇤u, or equivalently T 2u0 = B⇤(u � Bu0). But this then implies that

T 2u0 2 Range(T )\Range(B⇤), and since Tu0 2 Range(T ) also, we further deduce that

Tu0 2 T †(Range(T ) \ Range(B⇤)), where T † denotes the pseudoinverse of T , defined

in Corollary A.2. Finally, Corollary A.2(ii) shows that T †(Range(T ) \Range(B⇤)) ✓
Range(N1), and so Tu0 2 Range(N1), proving the existence of t00. One can now choose

t = t0 = t00 and !, µ > !min such that ! � µ = 1, which ensures !t0 � µt = t00, and

solves the first equation of (6.27).
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(ii) Fix any µ > !min. Let Hµ = G�1/2
µ H, and notice that since rank (H) = p, we

have rank (Hµ) = p, and dim(Range(Hµ)?) = q. Also note that Jµ = �G�1/2
µ (I �

Hµ(H⇤
µHµ)�1H⇤

µ)G
�1/2
µ , from which we may observe that the inner factor is an or-

thogonal projector onto Range(Hµ)?, and so rank (Jµ) = dim(Range(Jµ)) = q us-

ing invertibility of G�1/2
µ . Moreover, one can compute that H⇤Jµ = 0, which gives

Range(Jµ) ✓ Range(N), since the columns of N span the null space of H⇤. But

rank (N) = q, and so in fact

Range(Jµ) = Range(N). (6.28)

Now if b 2 Fn is given, (6.28) implies the existence of t 2 Fq satisfying the third

equation of (6.27), and it is unique as N is full column rank (by construction). Next

suppose that t and c00 are given. Then (6.28) again implies the existence of v 2 Fp+q

such that Nt = Jµv. We can then choose c, c0 such that

"
c

c0

#
= v +

"
0

D⇤E�1
µ c00

#
, and

this is a solution to the third equation of (6.27). Since µ is arbitrary, this completes

the proof.

We can now state the first condition that ensures that one can find for all u 2 Fq,

(b,!, µ, t, t0) satisfying (6.27).

Lemma 6.9. If Range(T ) \ Range(B⇤) = {0}, for each u 2 Fq, there exists a (b,!, µ, t, t0)

satisfying (6.27).

Proof. The main ingredient of this proof is the characterization of N in Lemma A.5(iii),

by which if Range(T ) \ Range(B⇤) = {0}, then one must choose N1 so that Range(N1) =

Range(T )?, andN2 = 0. We claim thatBN1 2 Fq⇥q is invertible, which we prove later. Now

fix any u 2 Fq, !, µ > !min (! 6= µ), and c00 2 Fn�p�q. Then by Lemma 6.8(i) there exists a

unique t00 2 Fq such that T (H⇤H)�1B⇤u = N1t00. LetA1 := {(t, t0) | t, t0 2 Fq,!t0�µt = t00},
and notice that it is non-empty. Also, since N2 = 0, the second equation of (6.27) reduces

to

BN1(t
0 � t) = B(H⇤H)�1B⇤u+D⇤(E�1

! � E�1
µ )c00, (6.29)

and then by the invertibility of BN1, there exists a unique t000 2 Fq such that the set

A2 := {(t, t0) | t, t0 2 Fq, t0� t = t000, (6.29) holds} is non-empty. So the set A1 \A2 contains
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exactly one element (t, t0) which is the solution to the equation

"
!I �µI
I �I

#"
t0

t

#
=

"
t00

t000

#
, (6.30)

because the matrix on the left-hand side has determinant (µ � !)q 6= 0 (by assumption).

Finally, with the choices for µ, c00 and the solution t of (6.30), we can by Lemma 6.8(ii)

find c, c0 satisfying the third equation of (6.27). Thus we have found (b,!, µ, t, t0) satisfying

(6.27), and this proves the lemma as u is arbitrary.

Now we prove the claim BN1 2 GL(q). Suppose for the sake of contradiction this is

not true, and there exists 0 6= y 2 Fq such that BN1y = 0. Then N1y 2 Range(T )?

(as Range(N1) = Range(T )?), and N1y 2 Ker(B) = Range(B⇤)? simultaneously, so in

fact N1y 2 (Range(T ) + Range(B⇤))?. Finally, we also know that rank (H⇤) = p, so

Fp = Range(H⇤) = Range(T ) + Range(B⇤) implying N1y 2 (Fp)?, hence N1y = 0. Since

N1 is full column rank by Corollary A.2(i), this implies y = 0 and gives a contradiction.

A second condition that guarantees for all u 2 Fq existence of (b,!, µ, t, t0) satisfying

(6.27), is that T is invertible. In fact we state a much stronger theorem below, from

which our result will follow. We also recall the definition of @DA(!, µ) from Definition 6.2,

so V db,!,µ = xb,! � xb,µ = @DA(!, µ)b, and we know that Range(@DA(!, µ)) ✓ Y by

Theorem 6.1. In the theorem below, we are concerned about when this can actually be an

equality.

Theorem 6.2. Suppose T 2 GL(p), and consider the open set U := (!min,1)⇥(!min,1) ✓
R2. Then there exists a closed subset V ✓ U of 2-dimensional Lebesgue measure zero,

such that for all (!, µ) 2 U \ V, we have Range(@DA(!, µ)) = Y (with Y defined as in

Theorem 6.1). Moreover, if A 2 P+(n), then Range(@DA(!, µ)) = Y for all !, µ � 0 and

! 6= µ.

The proof can be found in [35].

Combining Lemma 6.7, Lemma 6.9 and theorem 6.2 we have thus finished the proof of

the following corollary:

Corollary 6.4. dim(X ) = IndA(S) if any of the following conditions hold:

(i) Range(T ) \ Range(B⇤) = {0};



CHAPTER 6. THE INDEX OF INVARIANCE 180

(ii) T 2 GL(p);

(iii) A 2 P+(n).

We state a surprising consequence of Theorem 6.1, and Corollaries 6.3 and 6.4. In the

very special case of IndA(S) = 1, Theorem 6.2 can be strengthened significantly.

Corollary 6.5. Suppose IndA(S) = 1. Then

(i) For all distinct !, µ 2 (!min,1), the matrix @DA(!, µ) has rank 1, and constant

image Y defined in Theorem 6.1.

(ii) dim(X ) = 1.

Proof. (i) Fix any !, µ 2 (!min,1) such that ! 6= µ. Since IndA(S) = 1, by Corol-

lary 6.3(iii), DA is injective, so @DA(!, µ) 6= 0. Thus @DA(!, µ) at least has rank

1. Moreover, by Theorem 6.1, Range(@DA(!, µ)) ✓ Y with dim(Y) = 1, and so

Range(@DA(!, µ)) = Y.

(ii) We use result (i). Pick any ! 6= µ 2 (!min,1). Since Range(@DA(!, µ)) = Y, for any

y 2 Y, there exist b such that y = @DA(!, µ)b = xb,! � xb,µ. So dim(X ) = 1.

6.5 Conclusion

In this chapter, we studied the following family of weighted least-squares problems

xb,! = argminx2S k(A+ !I)�1/2(b�Ax)k2 (6.31)

for any b 2 Fn and ! > !min := ��min(A). We showed that

• There exist Y (dependent on A and S but independent from b, ! and µ), with

dim(Y)  IndA(S) = dim(S + AS) � dim(S) such that, for any !, µ > !min, and

b, xb,! � xb,µ 2 Y.

• There exist A and S such that IndA(S) is arbitrarily large and, for all b, the subspace

span({xb,! � xb,µ | !, µ > !min}) has dimension at most 1. This indicates that the

above bound is not always tight.
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• However, the subspace span({xb,! � xb,µ | !, µ > !min, b 2 Fn}) has dimension

IndA(S) if any of the following conditions is true:

– Range(T ) \ Range(B⇤) = {0};

– T 2 GL(p);

– A 2 P+(n).

T and B are defined in (6.9).

Additional results can also be found in [35].

While this was not the focus on this work, we note that our result indicates that e�cient

algorithms for (6.31) are possible. If we express x = Wy where W is a basis for Y, then the

search space is reduced from S to Y.



Chapter 7

Conclusion

This thesis is centered around the theme of scientific computing, linear systems, and parallel

computing. It is about exploiting sparsity and low-rank properties.

In the first part, we introduced spaND, a sparse fast hierarchical linear solver. spaND

is versatile and can be applied to a wide range of problems. It is guaranteed to never break

down on SPD matrices. We applied spaND to several problems. On many, it exhibits a

O(N logN) complexity, with separator sizes scaling like O
�
N1/3

�
. When combined with an

iterative method it leads to a fast algorithm to solve linear systems.

We then introduced TaskTorrent. TaskTorrent is a proof-of-concept of a lightweight,

fast runtime system with an easy-to-learn API and good interoperability with legacy codes.

We applied TaskTorrent on a couple of large linear algebra problems, showing it scales well

on thousands of cores and has a low overhead.

We then combined spaND and TaskTorrent. This serves as a validation of the Task-

Torrent approach on very large DAGs. While our current implementation of spaND has

some limitations, we studied the performance of spaND on a few large problems. When

the ranks grow slowly with the problem size, like on 2D problems, spaND shows good weak

scalings. Further improvements will require a way to address larger ranks in 3D, such as

using distributed RRQR or another sparsification approach.

We then tackled the problem of kernel matrix factorization. This is a critical step when

using hierarchical matrices to compress dense matrices arising in integral equations. We

introduced Skeletonized Interpolation, which is a fast and reliable algorithm to compute

such low-rank approximations. We studied its convergence and showed that it is more

robust than existing approaches such as ACA in some cases.
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Finally, we studied a parametrized least-square problem. We show that the solutions

to this problem lie on a lower-dimensional subspace than expected. We provide an explicit

expression for this subspace, and study in which case this bound on the dimension is tight

or not. Our result generalizes and explains a previously published result in [89].



Appendix A

Index of Invariance

A.1 Properties of the Index of Invariance

Proof of Lemma 6.3. (i) Since dim(AS)  dim(S), dim(S + AS)  2dim(S), and so

IndA(S) = dim(S + AS)� dim(S)  dim(S). Furthermore, since dim(S + AS)  n,

IndA(S)  n � dim(S). We conclude by noting that bn/2c � min{dim(S), n �
dim(S)} 2 N.

(ii) Since S is of dimension p, the existence of V follows from using the Gram-Schmidt

process on any basis of S. Now assume q � 1. Since dim(S +AS) = dim(S) + q, one

can find q independent vectors {xi}qi=1 in S+AS not in S, and letX =
h
x1 . . . xq

i
2

Fn⇥q. Then, applying the Gram Schmidt process to
h
V X

i
gives the semi-unitary

matrix
h
V V 0

i
. The columns of V 0 are orthogonal to S because

h
V V 0

i
is semi-

unitary, so Range(V 0) ✓ S? \ (S + AS). Also S + AS = S � (S? \ (S + AS)), thus
dim(S? \ (S +AS)) = q = dim(Range(V 0)), so in fact Range(V 0) = S? \ (S +AS).

The next three results build upon Corollary 6.1.

Lemma A.1. Let A 2 Fn⇥n, S 2 GrF(p, n), and IndA(S) = q, with 1  p < n. Leth
V1 V2

i
be invertible, such that Range(V1) = S, and Range(V2) = S?. Then AV1 =

V1S1 + V2S2 for unique S1 2 Fp⇥p, S2 2 F(n�p)⇥p, and rank(S2) = q.

Remark A.1. Note that since there always exist S1 and S2 such that AV1 = V1S1 + V2S2,

Lemma A.1 is necessary and su�cient: if rank(S2) = q, IndA(S) = q.
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Proof. Existence and uniqueness of S1 and S2, such that AV1 = V1S1+V2S2, follows from the

invertibility of
h
V1 V2

i
, as the columns form a basis of Fn. Now A has the decomposition

(6.9) by Corollary 6.1, where Range(V ) = S, and since
h
V V 0 V 00

i
is unitary, we also have

Range(
h
V 0 V 00

i
) = S?. Thus there exist M1 2 GL(p) and M2 2 GL(n�p), such that V1 =

VM1 and V2 =
h
V 0 V 00

i
M2, and so we have AV = VM1S1M

�1
1 +

h
V 0 V 00

i
M2S2M

�1
1 .

But AV = V T +
h
V 0 V 00

i "B
0

#
also, from which it follows that

T = M1S1M
�1
1 , and M2S2M

�1
1 =

"
B

0

#
. (A.1)

The latter gives that rank(S2) = rank(B) = q, as M1,M2 are invertible.

Corollary A.1. Let A 2 Fn⇥n, and S be a subspace. Define the nested sequence of subspaces

S0 ✓ · · · ✓ Si ✓ Si+1 ✓ . . . , as S0 = S, and Si+1 = Si+ASi. Then IndA(Si) � IndA(Si+1)

for all i � 0, and there exists j � 0 such that IndA(Sj) = 0.

Proof. If IndA(S0) = 0, then Si = S0 for all i � 0, and the statement follows. Now

assume IndA(S0) � 1. Let us just show that IndA(S0) � IndA(S1); repeated application

of the same argument proves that the sequence {IndA(Si)}1i=0 is non-increasing. If S1 = Fn

we are again done as Si = S1 for all i � 1, so assume this is not the case. Consider

the decomposition of A in (6.9), from which we have Range(
h
V V 0

i
) = S + AS, and

Range(V 00) = (S + AS)?; thus defining V1 :=
h
V V 0

i
and V2 := V 00 we obtain AV1 =

V1S1 + V2S2, with S2 =
h
0 D

i
(and S1 similarly determined by (6.9)). Now rank(S2) =

rank(D)  IndA(S), and thus applying Lemma A.1 gives IndA(S + AS)  IndA(S). To

prove that there exists j � 0 such that IndA(Sj) = 0, notice that if this was false then

there would exist k � 0 such that dim(Sk) > n, which would give a contradiction.

Lemma A.2. Let A 2 Fn⇥n, S 2 GrF(p, n), and IndA(S) = q. Let us also define S 0 :=

S? \ (S +AS). Then we have the following.

(i) If A! := A+ !I for ! 2 F, then IndA!(S) = q.

(ii) IndA(S?)  min{p, n�p}  bn/2c, IndA(S+AS)  min{q, n�p�q}  b(n�p)/2c,
and IndA(S 0)  q.
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(iii) If A 2 GL(n), then IndA�1(S) = q.

(iv) If A 2 Sym(n), then IndA(S?) = q, and IndA(S 0) = q. Thus if q = 0, both S and S?

are A�invariant, and if A 2 Sym(n)\GL(n), both S and S? are also A�1�invariant1.

(v) If A 2 P+(n) and IndA(S) = 0, then for any s 2 R, IndAs(S) = 0.

Proof. (i) This follows because S +A!S = S +AS.

(ii) IndA(S?)  min{p, n � p}  bn/2c follows by applying Lemma 6.3(i) to S?, and

noticing that dim(S?) = n � p. IndA(S + AS)  q was proved in Corollary A.1.

Applying Lemma 6.3(i) to S + AS gives IndA(S + AS)  min{p+ q, n� p� q}, as
dim(S+AS) = p+ q; so combining gives IndA(S+AS)  min{q, p+ q, n� p� q} =

min{q, n � p � q}. Finally min{q, n � p � q}  b(n � p)/2c. IndA(S 0)  q follows

from Lemma 6.3(i): IndA(S 0)  dim(S 0) = IndA(S) = q.

(iii) The p = 0 case is clear, so assume p � 1. Denote by Â the right-hand side of (6.9).

Since A 2 GL(n), Â 2 GL(n) and we have A�1
h
V V 0 V 00

i
=
h
V V 0 V 00

i
Â�1.

We use the subscript 1 (resp. 2) to denote the first p (resp. last n�p) rows or columns.

From the nullity theorem (Theorem 2.1 in [142]), nullity (Â�1)21 = nullity Â21, and so

rank (Â�1)21 = rank (Â21) = q. We then have A�1V = V (Â�1)11+
h
V 0 V 00

i
(Â�1)21,

and using Lemma A.1 we conclude IndA�1(S) = q.

(iv) Assuming A 2 Sym(n), (6.9) gives P = B⇤, Q = 0, Range(
h
V 0 V 00

i
) = S?, S 0 =

Range(V 0), and S 0? = Range(
h
V V 0

i
). We also have A

h
V 0 V 00

i
=
h
V 0 V 00

i
S1 +

V S2, and AV 0 = V 0 eS1 +
h
V V 0

i
eS2, with S1, S2, eS1, eS2 determined by (6.9). In

particular S2 =
h
P 0

i
and eS2 =

"
P

D

#
, and note that rank(P ) = q, by Lemma 6.4.

Now rank(S2) = rank(P ) trivially, while rank(eS2) = q as rank(eS2) � rank(P ), and

also rank(eS2)  q since eS2 2 F(n�q)⇥q. So by Lemma A.1 IndA(S?) = IndA(S 0) = q.

Finally by (iii), if A 2 Sym(n)\GL(n) and q = 0, then IndA�1(S) = IndA�1(S?) = 0.

(v) Note that from assumptions, AS = S, using both invertibility of A and IndA(S) = 0.

By an argument similar to that already used in Lemma 6.2 we see that AsS = S also

(since S is spanned by eigenvectors of A, which are also eigenvectors of As), and the

conclusion follows.
1The fact that S being A�invariant implies S? is A�invariant for Hermitian A is well known.
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A.2 Quadratic forms

Lemma A.3. Let m � n, A 2 Fm⇥n a full column rank matrix, and b 2 Fn. The solution

to minx2Fn kAx� bk2 is uniquely given by x = (A⇤A)�1A⇤b.

Proof. Rewrite f(x) := kAx � bk22 = x⇤A⇤Ax � (x⇤A⇤b) � (b⇤Ax) + b⇤b. Since A is full

column rank, P = A⇤A 2 P+(n). Let Q be such that P = Q2, Q 2 P+(n). Such Q always

exists: let U⇤U⇤ = P be the eigenvalue decomposition of P , and then one can choose

Q = U⇤1/2U⇤. Then f(x) = (Qx)⇤(Qx) � ((Qx)⇤(Q�1A⇤b)) � ((Q�1A⇤b)⇤(Qx)) + b⇤b =

kQx�Q�1A⇤bk22 + b⇤b� b⇤AP�1A⇤b. The minimum is obtained when Qx�Q�1A⇤b = 0,

which happens uniquely (since Q 2 P+(n)) when Q2x = A⇤b or A⇤Ax = A⇤b.

Proof of Lemma 6.1. Each x 2 S can be uniquely written as x = V y for some y 2 Fp. Then

rewrite the function to minimize in (6.6) as

kA�1/2
! (b�Ax)k2 = kA�1/2

! AV y �A�1/2
! bk2. (A.2)

In this expression, A�1/2
! AV is full rank since A! 2 P+(n) (because of the choice of !min),

A 2 GL(n), and V is full-rank. Then using Lemma A.3, the unique minimizer to (A.2)

is given by y = (V ⇤AA�1
! AV )�1V ⇤AA�1

! b or x = V y = V (V ⇤AA�1
! AV )�1V ⇤AA�1

! b. For

the last part, notice that xb,! does not depend on the choice of V , because if V 0 2 Fn⇥p is

another full rank matrix whose columns span S, then V 0 = V L for some L 2 GL(p), from

which it follows that V (V ⇤AA�1
! AV )�1V ⇤ = V 0(V 0⇤AA�1

! AV 0)�1V 0⇤. This completes the

proof.

A.3 The nullspace of H
⇤

We present here a geometrical relationship between the images of T and B⇤, and the

nullspace of H⇤ =
h
T B⇤

i
, as defined in the statement of Theorem 6.1. Recall that

T 2 Fp⇥p is Hermitian, and H⇤ and B⇤ 2 Fp⇥q are full rank, with p � q. To do this we first

establish a more general result below. In this appendix, for any matrix M 2 Fp⇥q, and A
a subspace of Fp, we define preM (A) := {x 2 Fq | Mx 2 A}.
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Lemma A.4. Let M =
h
M1 M2

i
be a matrix such that M1 2 Fs⇥s1, M2 2 Fs⇥s2, with

s � s2, and suppose that rank (M2) = s2. Let N be any matrix such that the columns of N

span the nullspace of M , and let us partition N as N =

"
N1

N2

#
, where N1 are the first s1

rows of N . Then

(i) N2 = �(M⇤
2M2)�1M⇤

2M1N1.

(ii) rank (N) = rank (N1).

(iii) Range(N1) = preM1
(Range(M2)).

Proof. (i) As the columns of N span the nullspace of M , we have M1N1+M2N2 = 0, and

since rank (M2) = s2, the matrix M⇤
2M2 is invertible, from which the result follows.

(ii) Let N 0 := �(M⇤
2M2)�1M⇤

2M1. From (i), we have N =

"
I

N 0

#
N1. Since

"
I

N 0

#
is full

column rank, the conclusion follows.

(iii) From (i) M1N1 = �M2N2; so each column of N1 is in preM1
(Range(M2)), and hence

Range(N1) ✓ preM1
(Range(M2)). Now define A := Range(M1) \ Range(M2), and

observe that preM1
(Range(M2)) = preM1

(A). To prove the result it su�ces to show

that dim(Range(N1)) = dim(preM1
(A)). Let rank (M) = r, and suppose rank (N) =

t, so dim(Range(N1)) = t by part (ii). From the rank-nullity theorem we first have

t = s1 + s2 � r,

dim(Range(M1)) + dim(Ker(M1)) = s1,
(A.3)

and since Range(M2) = A� (A? \Range(M2)), and Fs = Range(M1)�Range(M1)?

we also have

dim(A) + dim(A? \ Range(M2)) = dim(Range(M2)) = s2,

dim(Range(M1)) + dim(Range(M1)
?) = s.

(A.4)

Next notice that Range(M1) +Range(M2) = Range(M1) +A� (A? \Range(M2)) =

Range(M1)+(A?\Range(M2)). But Range(M1)\(A?\Range(M2)) = (Range(M1)\
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Range(M2)) \A? = A \A? = {0}, so in fact

dim(Range(M1)) + dim(A? \ Range(M2)) = dim(Range(M1) + Range(M2)) = r.

(A.5)

Using (A.3), (A.4) and (A.5) we finally find

dim(A) + dim(Ker(M1)) = s1 + s2 � r = t. (A.6)

Now consider the set A0 := Ker(M1)? \ preM1
(A), which is a subspace of preM1

(A).

Then the restriction to A0 of the linear map given by M1 is an isomorphism M1|A0 :

A0 ! A, which gives dim(A) = dim(A0). Notice that this proves the result as

preM1
(A) = A0 � Ker(M1), since Ker(M1) is also a subspace of preM1

(A), giving

dim(preM1
(A)) = dim(A0) + dim(Ker(M1)) = t, using (A.6).

Let us apply Lemma A.4 to characterize the nullspace of H⇤, which is of dimen-

sion q, and derive some consequences. If we choose N 2 F(p+q)⇥q to be full column

rank, as in Lemma 6.5, and write N =

"
N1

N2

#
as in Lemma A.4 with N1 2 Fp⇥q, then

we have N2 = �(BB⇤)�1BTN1, and Range(N1) = preT (Range(B
⇤)). Denoting A :=

Range(T ) \ Range(B⇤), and A0 := Ker(T )? \ preT (A), the proof of Lemma A.4(iii) shows

that Range(N1) = preT (A) = Ker(T ) � A0. Now as T 2 Sym(p), we have Ker(T ) =

Range(T )?, which means that A0 ✓ Range(T ), and Range(N1) = Range(T )? �A0 (an or-

thogonal direct sum). Thus we have that both A,A0 are subspaces of Range(T ). Also TA0 ✓
A from definition, and moreover dim(A) = dim(A0) from the proof of Lemma A.4(iii), which

means TA0 = A. Now by the spectral theorem, the restriction to the subspace Range(T )

of the linear operator T , i.e. T |Range(T ), is invertible; thus in fact TA0 = T |Range(T )A0 = A,

or A0 = T |�1
Range(T )A. Denoting the pseudoinverse [113, 120] of T by T †, it is also eas-

ily checked that T †|Range(T ) = T |�1
Range(T ), since T 2 Sym(n), and so we have proved the

following corollary:

Corollary A.2. Let N 2 F(p+q)⇥q be a full column rank matrix, whose columns span the

nullspace of H⇤, and let T † be the pseudoinverse of T . If we partition N as N =

"
N1

N2

#
,

where N1 2 Fp⇥q and N2 2 Fq⇥q. Then



APPENDIX A. INDEX OF INVARIANCE 190

(i) N2 = �(BB⇤)�1BTN1, and rank (N) = rank (N1) = q.

(ii) Range(N1) = Range(T )? � T †(Range(T ) \ Range(B⇤)).

Finally we note a couple of special cases in the next lemma that follow from Corol-

lary A.2.

Lemma A.5. Let N,N1, N2 be as in Corollary A.2. Then

(i) Range(B⇤) ✓ Range(T ) if and only if T 2 GL(p). In this case, one can choose

N1 = �T�1B⇤, and N2 = I.

(ii) Range(T ) ✓ Range(B⇤) if and only if B⇤ 2 GL(p). In this case one can choose

N1 = Q, for any Q 2 GL(p) (for e.g. Q = I).

(iii) If Range(T ) \ Range(B⇤) = {0}, then N1 should be chosen such that Range(N1) =

Range(T )?, and in this case N2 = 0.

Proof. (i) If T 2 GL(p), Range(T ) = Fp and so Range(B⇤) ✓ Range(T ). If Range(B⇤) ✓
Range(T ), then Range(T ) = Fp as rank (H⇤) = p, so T 2 GL(p). In this case,

Range(T )? = {0}, Range(T ) \ Range(B⇤) = Range(B⇤), and T † = T�1. Thus from

Corollary A.2(ii) we have Range(N1) = T�1Range(B⇤) = Range(T�1B⇤), and so we

can choose N1 = �T�1B⇤. With this choice, we get N2 = I by Corollary A.2(i).

(ii) Interchanging the roles of T and B⇤ in the proof of part (i) proves that Range(T ) ✓
Range(B⇤) if and only if B⇤ 2 GL(p). In this case Range(T )\Range(B⇤) = Range(T ),

and so T †(Range(T )\Range(B⇤)) = T †Range(T ) = T |�1
Range(T )Range(T ) = Range(T ).

This gives using Corollary A.2(ii) that Range(N1) = Range(T )? � Range(T ) = Fp.

Thus N1 must be chosen to be an invertible matrix in GL(p).

(iii) It follows directly in this case that Range(N1) = Range(T )? from Corollary A.2(ii).

Thus TN1 = 0 and this implies N2 = 0.
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