
Master’s Thesis
LINMA2990

Robust Low-Rank Matrix Completion

Léopold Cambier

Dissertation committee:
Prof. Pierre-Antoine Absil (UCL, advisor)
Dr. Nicolas Boumal (ENS de Paris, France, advisor)
Prof. Yurii Nesterov (UCL)

Academic year 2014-2015
Louvain-la-Neuve, June 1, 2015

ii

Acknowledgments

As a first real experience of academic work, this master’s thesis was for me a great experience,
that I certainly intent to continue in the upcoming years. This has been the confirmation
that academia is that in which I want to work in the future.

I sincerely want to thank my two advisors, Pierre-Antoine Absil and Nicolas Boumal. Prof.
Absil, thank you for all the insightful discussions, ideas and your unswerving support through-
out the year. I also really appreciated your invitation to the RANSO meeting, as well as your
proposition to submit a paper: this was a great first experience of academia. Finally, thanks
for the careful reading of the paper and of parts of this thesis, and for some great paragraphs
suggestions. Nicolas, thanks for all your precious advice for both this work and my future
career. You have no idea how useful the few discussions we had were.

I am also grateful to Prof. Yurii Nesterov for the numerous fruitful ideas.

A special thank to my fellow students, Damien Scieur and Mathieu Dath, for accepting to
review this document and to give me precious comments and ideas. Last but not least, many
thanks to my family and other friends for their help and support.

iii

iv ACKNOWLEDGMENTS

Contents

Notations vii

Introduction 1

1 Low-Rank Matrix Completion 3
1.1 Motivations . 3
1.2 The Problem . 4
1.3 Previous Work . 4

2 Essential Tools of Riemannian Optimization 7
2.1 The Manifold Structure . 7

2.1.1 Embedded and Quotient Manifolds . 8
2.2 Steepest Descent Algorithm . 8

2.2.1 Tangent Space and Inner Product . 8
2.2.2 Gradient . 9
2.2.3 Retraction . 9
2.2.4 Steepest Descent . 10

2.3 Conjugate Gradient Algorithm . 10
2.3.1 Vector Transport . 11
2.3.2 Conjugate Gradient . 11

I Improvements of the RCGMC Algorithm 13

3 A Dai-Yuan Conjugate Gradient Algorithm for RCGMC 15
3.1 RCGMC . 15
3.2 Conjugate Gradient . 16
3.3 Dai-Yuan Conjugate Gradient . 16
3.4 Line-Search Algorithm for the Weak Wolfe Conditions 17
3.5 Numerical Results . 18
3.6 Conclusions . 22

4 High Performance Computing 23
4.1 The Main Parts of RCGMC . 23
4.2 Parallelization Strategy . 24
4.3 Numerical Results . 26
4.4 A Parallel Dai-Yuan Conjugate Gradient . 28

v

vi CONTENTS

II Robust Low-Rank Matrix Completion 31

5 Robust Low-Rank Matrix Completion 33
5.1 Previous work . 34
5.2 Our Contribution . 36
5.3 Iteratively Reweighted Least-Squares Method 36

5.3.1 Convergence of the IRLS . 36
5.3.2 The Choice of the h Function . 37
5.3.3 The Algorithm . 38

5.4 Alternating Linear Matrix Completion . 39
5.4.1 Solving the LP’s . 40
5.4.2 The Algorithm . 40
5.4.3 Convergence . 41

5.5 Smoothing Techniques . 42
5.5.1 The Low-Rank Matrices Manifold . 42
5.5.2 Smoothing Techniques . 44
5.5.3 Convergence Analysis . 46

5.6 Numerical Results and Comparison of the Algorithms 47
5.6.1 Synthetic Experiments . 48
5.6.2 Conclusions . 56

6 Applications 57
6.1 Recommender Systems . 57
6.2 Robust Structured Image Inpainting . 59

Conclusions 63

Bibliography 67

A Preconditioned Dai-Yuan Conjugate Gradient 69

B Implementation Details for the Parallel RCGMC 71

C Orthogonalized ALMC 73

Notations

A A matrix, usually of size m× n unless stated otherwise.
A> The transpose of the matrix A.
Aij The (i, j) entry of the matrix A.
[m] The set of integers from 1 to m: [m] = 1, 2, . . . ,m.
Mr The set of m× n matrices of rank r.
Ω The set of known or observed entries. Ω ⊆ [m]× [n].
Ω̄ The set of unknown entries: Ω̄ = ([m]× [n])\Ω.
‖ · ‖`0 The `0 quasi-norm1: ‖X‖`0 = #{(i, j) ⊆ [m]× [n] : Xij 6= 0} .
‖ · ‖`1 = ‖ · ‖1 The `1 norm: ‖X‖`1 =

∑m,n
i=1,j=1 |Xij |.

‖ · ‖`2 = ‖ · ‖F The `2 or Frobenius norm: ‖X‖`2 =
(∑m,n

i=1,j=1 |Xij |2
)1/2

.

‖ · ‖`p The `p norm: ‖X‖`p =
(∑m,n

i=1,j=1 |Xij |p
)1/p

.

‖ · ‖Sp The Schatten p-norm: ‖X‖Sp =
(∑min(m,n)

i=1 σpi

)1/p
where

σ1, . . . , σmin(m,n) are the singular values of X.
PΩ(X) The orthogonal projector of X onto the space of m× n matrices with

0 on Ω̄, i.e., PΩ(X)ij = Xij if (i, j) ∈ Ω and PΩ(X)ij = 0 if (i, j) 6∈ Ω.
PΩ̄(X) The orthogonal projector of X onto the space of m× n matrices with

0 on Ω, i.e., PΩ̄(X)ij = Xij if (i, j) ∈ Ω̄ and PΩ̄(X)ij = 0 if (i, j) 6∈ Ω̄.

1Since it does not respect the condition ‖λ ·X‖ = |λ| · ‖X‖ ∀λ ∈ R.

vii

viii NOTATIONS

Introduction

“How to predict missing values in a database ?”

This question has grown in importance for the last ten years.

The growing quantity of information that can be collected and stored by modern computers
makes the use of data mining tools more and more critical. Among the new challenges we are
facing, the problem of inferring information from partial data is one of the most important.
This thesis deals with one of the solutions to this problem. The key concept we will use can
be summarized as

“Often, data live in low dimensional spaces”.

The idea behind this sentence is that, even though this huge amount of data carries a lot of
information, one can summarize this information using only some criteria.

For instance, consider the problem of choosing a book to read. There is approximately 130
millions books on Earth. Yet, one does not probably has in mind a preference score for each
of the books. On the other hand, there is only a limited amount of different genres, and we
all have our preferences for some genres in particular. Thus, we are able to choose a book by,
basically, weighting each of the genres present in the book with our preferences. This notion
of genre is what is modeled by the low-rank hypothesis.

Often, data can be stored as matrices. For instance, when someone read a book, it could
rate it by filling an entry in a matrix, where each row correspond to a user and each column
to a book. Naturally, this matrix would be really incomplete since no one has the time to
read every book. The aim of a Low-Rank Matrix Completion method is to complete this huge
incomplete matrix. Using the low-rank hypothesis, this can be done when observing only a
small fraction of the entries.

In this thesis, we thus study the problem of Low-Rank Matrix Completion. We first begin to
motivate the problem, we formally state our goal and we summarize the existing algorithms.
We then explain the basics of Riemannian optimization which is a tool we will use afterwards.

In the first part, we study and improve the RCGMC algorithm (Boumal & Absil, 2015) that
aims at solving this problem of low-rank matrix completion. In the first chapter, we study a
modification of the original algorithm; in the second chapter, we build a parallel version of
both the original and the modified algorithm. Both modifications are efficient: they allow to
significantly speed up the resolution of the problem.

The second part of this thesis is dedicated to the problem of Robust Low-Rank Matrix Com-
pletion. This part is clearly different from the first one. But because it is of significant
importance and because we introduce a more innovative idea, we decided to name this thesis

1

2 INTRODUCTION

Robust Low-Rank Matrix Completion.

This part is thus dedicated to the problem of low-rank matrix completion where the data
contain strong outliers. It uses significantly different tools as the one from the first part that
can only handle the case where the data are corrupted by some small additive noise. To
solve this problem, we developed three different techniques that we compare to other existing
algorithms.

Finally, we end this thesis by applying one of our robust algorithm on some real datasets to
show its effectiveness. We then briefly summarize our results and conclude on some possible
future considerations.

1 | Low-Rank Matrix Completion

1.1 Motivations

Low-Rank Matrix Completion can be used as a building block to solve many problems in
engineering and scientific computing, for instance in image processing, machine learning or
data mining. Basically its role is to predict the missing values of a matrix using only a fraction
of observed entries and with the assumption that the matrix is low-rank (or at least close to
low-rank).

For instance, solving the problem of recommender systems, where one wants to predict users’
ratings of some item, can be achieved using low-rank matrix completion. In this case, the
data are ratings given by users to some items (movies, books, etc.), and our goal is to guess
the remaining ratings. The low-rank assumption makes sense, since the “choice space” of
each user (i.e., the space of different criteria—for instance the genres, in the case of movies or
books—a user takes into account in order to choose an item) is often of low dimension. The
most famous example is definitively the Netflix prize (Bennett & Lanning, 2007), where a
component of the winning algorithm was a low-rank matrix completion method. In section
6.1, we present an application of one of our methods to the Netflix dataset.

Low-rank matrix completion can also be used in image processing and computer vision. For
instance it can reconstruct the paths of 3D points in space from only observations of parts of
their trajectory using a fixed camera. This is the problem of structure from motion (Kennedy
et al., 2014). The low-rank assumption comes from the fact that the matrix containing the
coordinates of the points in the camera plane at each frame is known to be low-rank. These
techniques can also be applied to reconstruct structured damaged images (Peng et al., 2012)
(where the data are the known pixels and the unknowns of the problem are the remaining
ones), but the low-rank assumption does not always makes sense: one has to be careful to
use the right “low-rank image”. In section 6.2 we apply one of our algorithms to successfully
reconstruct highly damaged structured images.

Finally low-rank matrix completion can be used in the sensor network localization problem
where one wants to infer sensors positions in space using only a small fraction of pairwise
distances between some points (Drineas et al., 2006; So & Ye, 2007; Oh et al., 2010). This
may be useful for instance when one has a large amount of low-power wireless routers in a 2
or 3D space that are only able to compute their distances to a few neighbors, and one wants
to create a map of their positions.

3

4 CHAPTER 1. LOW-RANK MATRIX COMPLETION

1.2 The Problem

The Low Rank Matrix Completion (LRMC) problem is the problem of recovering an unknown
low-rank matrix by knowing only a (usually very) small subset of its entries, possibly corrupted
by noise or containing outliers.

Formally, in the perfect noiseless case, the problem could be stated as recovering a matrix
M ∈ Rm×n, observed only on a subset Ω of its entries, by finding a matrix X ∈ Rm×n such
that

Xij = Mij ∀(i, j) ∈ Ω

where X ∈ Rm×n is low-rank1. We emphasize the fact that M is given only on Ω: Mij is
known for (i, j) ∈ Ω but not for (i, j) 6∈ Ω.

The equality constraint
Xij = Mij ∀(i, j) ∈ Ω

is often also expressed as
PΩ(X) = PΩ(M)

where PΩ : Rm×n → Rm×n is such that

PΩ(X)ij =
{
Xij if (i, j) ∈ Ω,
0 otherwise.

1.3 Previous Work

To get the matrix with the lowest possible rank, one would want to solve the following program

min
X∈Rm×n

rank(X)

subject to PΩ(X) = PΩ(M).
(1.1)

This problem, however, is intractable in practice, because it is both NP-hard and the only
known algorithm to solve it has time doubly exponential in the size of X (Chistov & Grigor’ev,
1984).

The now well known method (Candès & Recht, 2009) to solve such a problem is to relax the
objective function by the nuclear norm:

‖X‖∗ =
min(m,n)∑
i=1

σi(X).

This leads to the following convex optimization problem

min
X∈Rm×n

‖X‖∗

subject to PΩ(X) = PΩ(M).

The advantage with this formulation is that it is convex and can be thoroughly analyzed. Can-
dès & Recht (2009) proved that under a few suitable assumptions, solving this convex program

1In our case, the rank r of X will be fixed in advance; in some other cases, the rank is not fixed in advance,
and one only aims for the lowest-rank matrix X.

1.3. PREVIOUS WORK 5

leads to the solution of the original problem (1.1). Basically, these assumptions require the
number of observed entries (i.e., the size of Ω) to be high enough (at least O

(
n5/4r logn

)
for

an n×n matrix) and sampled uniformly at random. They also require the low-rank underly-
ing matrix to come from the “random orthogonal model”, meaning it needs to have “spread
enough” singular vectors. More details can be found in (Candès & Recht, 2009).

This work has been the foundation of the Low-Rank Matrix Completion field, that has drawn
much attention in the scientific community for the past 6 years. Starting in 2009, numerous
algorithms have been developed to solve the matrix completion problem, in various settings.

An natural extension of such a theory would be the problem of noisy low-rank matrix com-
pletion where M is the sum of a low-rank matrix and a small Gaussian perturbation. Hence,
M is not (at all) low-rank, but close to be low-rank. In this case it has been proved (Candes
& Plan, 2010) that, if the few observed entries are corrupted by a small Gaussian noise, one
can hope to recover the underlying low-rank matrix with an error proportional to the noise
level.

To solve such a problem, there exist globally four main types of algorithms, relying on very
different techniques.

First, many algorithms rely on the nuclear norm heuristic, as explained before. For instance,
a natural formulation of the noisy low-rank matrix completion problem is (Candes & Plan,
2010)

min
X∈Rm×n

‖X‖∗

subject to ‖PΩ(X−M)‖`2 ≤ δ

for some value2 of δ.

Other methods handle the low-rank “constraint” differently. For instance, assume the target
rank of X is known in advance (which actually makes sense in a lot of applications, especially
in computer-vision). Hence if X is of rank (at most) r, it can be written as the product
of two thin rectangular matrices, U ∈ Rm×r and V ∈ Rr×n, such that X = U · V. It is
already useful to note that this representation is not unique: for all M ∈ Rr×r invertible,
X = U ·V = U ·M ·M−1 ·V = (U ·M) · (M−1 ·V) = Ũ ·Ṽ, and Ũ ·Ṽ is another factorization
of X. Using this formulation, the optimization problem can be stated as finding U and V
such that their product better fits M on the mask Ω:

min
U,V
‖PΩ(UV−M)‖`2 .

A way to solve such a problem is to alternatively fix one factor and to optimize with respect to
the other. This leads to intermediate easy least-squares problems that sometimes even have
closed-form solutions. Using a slightly more complex nonlinear successive over-relaxation
algorithm, Wen et al. (2012) proposed LMaFit, an algorithm to solve the low-rank matrix
completion problem based on alternating minimization.

Another way to handle the low-rank constraint is to “notice” that the setMr of matrices of
rank r,

Mr = {X ∈ Rm×n : rank(X) = r},

2We use the notation ‖ · ‖`2 for the Frobenius norm ‖ · ‖F to emphasize the difference with the `1 norm to
be used in the second part of this document.

6 CHAPTER 1. LOW-RANK MATRIX COMPLETION

is a smooth Riemannian manifold of dimension r(m+n−r) (Lee, 2003). Then, using now well
developed optimization methods on manifolds (see (Absil et al., 2008) for a comprehensive
analysis of such methods), we can solve smooth optimization problems using the search space
Mr. For instance, this problem

min
X∈Mr

‖PΩ(X−M)‖`2

can be solved using techniques very close to the well known conjugate gradient method. This
led to LRGeomCG (Vandereycken, 2013).

Finally some algorithms rely on the fact that the data explicitly live in a low dimensional linear
subspace. Taking account of this, we can formulate the low-rank matrix completion problem as
the recovery of this linear r-dimensional subspace U (represented using an orthogonal matrix
U which columns span U , i.e., U = col(U), and slightly abusing notations):

min
U:U>U=Ir

‖PΩ(UWU −M)‖`2

where WU is the solution of the following least-square problem

WU = argminW∈Rr×n ‖PΩ(UW−M)‖`2 .

Such idea led to the RTRMC (Riemannian Trust-Region Matrix Completion) and RCGMC
(Riemannian Conjugate Gradient Matrix Completion) algorithms (see (Boumal & Absil, 2015)
and more details in section 3.1), which also include a regularization term to make the solution
of the least-square problem unique. Another algorithm, GROUSE (Balzano et al., 2010),
relies on the same idea but is designed to perform online matrix completion, i.e., when we
observe one column of M at a time.

It is interesting to note that in the first formulation, it is the rank (or some relaxation of
the rank function) that is minimized, while the constraint enforces a certain level of “fit”
between the data and the recovered matrix. On the other hand, the other ones basically do
the opposite: the rank is fixed a priori, and it is the level of “fit” between X and M that is
minimized. In this work, we will focus on this second formulation where the rank is fixed a
priori.

2 | Essential Tools of Riemannian
Optimization

This chapter describes the essential tools of Riemannian optimization. The goal is not to have
formal and accurate formulations, but rather to get some insight about the main differences
between Riemannian optimization and classical Euclidian optimization and to introduce the
tools needed to extend the algorithms from Rn to arbitrary manifolds. Most of the concepts
in this chapter are precisely defined in (Absil et al., 2008). To keep things simple, we will
only present how to generalize the steepest descent and the (non-linear) conjugate gradient
algorithms.

Our topic of interest is the optimization of a (one or twice) differentiable function f :M→ R
defined from a manifoldM to R:

min
x∈M

f(x).

Optimization on manifolds can simply be seen as the extension of classical Euclidian opti-
mization where the search space is a general manifold instead of simply Rn.

2.1 The Manifold Structure

Informally, a d-dimensional manifoldM can be seen as a set that can be identified (through
some bijection) to Rd. The idea is that, locally, the manifold can be identified with Rd.

Formally, we need to define what is called charts and atlases first. Then, the general definition
will follow.
Definition 1 (Chart). A d-dimensional chart ϕ from U ⊆M to Rd is a bijection from U to
Rd. It is denoted by (U , ϕ)

Intuitively, a chart locally assign to a point of U some coordinates in Rd.

The problem is that, to have suitable algorithms, we need to have charts that “match” cor-
rectly, i.e., that smoothly overlap at their boundaries. To do so, we define an atlas, a collection
of charts that overlap smoothly:
Definition 2 (Atlas). An atlas A ofM into Rd is a collection of charts (Uα, ϕα) such that

•
⋃
α Uα =M

• for any pair α, β with Uα ∩Uβ 6= ∅, the sets ϕα(Uα ∩Uβ) and ϕβ(Uα ∩Uβ) are open sets
in Rd and the change of coordinates ϕβ ◦ ϕ−1

α is smooth.

7

8 CHAPTER 2. ESSENTIAL TOOLS OF RIEMANNIAN OPTIMIZATION

The last difficult point is that a given set M can have many atlases. To circumvent this
difficulty, we define A+ as the maximal atlas ofM such that it contains all possible charts of
M.

We now have the required tools to define a manifold.
Definition 3 (Manifold). A d-dimensional manifold is a couple (M,A+) where M is a set
and A+ is a maximum atlas fromM to Rd.

These definitions allow to formalize the idea that a manifold (M,A) (or simply a manifold
M if the atlas is obvious from the context) is locally equivalent to Rd.

2.1.1 Embedded and Quotient Manifolds

There exist two very different manifold structures of interest, namely embedded and quotient
manifolds. Both are manifolds in the sense of the previous section, but they are conceptually
quite different.

Embedded manifolds are manifolds that can be easily described by constraints in the ambient
Rm×n space. For instance, the sphere

Sn−1 = {X ∈ Rn : ‖X‖2 = 1}

is an embedded manifold of Rn (Absil et al., 2008), as it is simply defined by constraints in the
Rn ambient space (and it matches the previous definition of a manifold). The set of low-rank
matrices

Mr = {X ∈ Rm×n : rank(X) = r}

can also be seen as an embedded manifold of Rm×n (Lee, 2003). Theses manifolds are easy
to handle in the sense that they are easy to visualize as curved shapes in the ambient space.

On the other hand, quotient manifolds are manifolds described by the mean of equivalence
classes. A point on the manifold will be a class, and we will represent it in the computer by the
mean of one element of the class. Even though they are quite useful (the RTRMC algorithm
of Boumal & Absil (2011) is based on optimization on the Grassman manifold which is a
quotient manifold) this is out of the scope of this very basic introduction.

2.2 Steepest Descent Algorithm

We first begin to introduce the tools needed to generalize the steepest descent algorithm, from
its Euclidian version

xk+1 = xk − αk∇f(xk)

to the Riemannian one. To do so, we need the notions of tangent space, gradient and retraction.

2.2.1 Tangent Space and Inner Product

A way to visualize smooth Riemannian manifolds is to view them as curved shapes in the
ambient space. Because they are smooth, each point x ∈ M can be associated to a tangent
plane TxM which is a local first-order approximation of the manifold. This tangent plane or
space is a vector space.

2.2. STEEPEST DESCENT ALGORITHM 9

Given a point x ∈ M and a tangent space TxM, one can define an inner product between
two vectors ξx ∈ TxM and ηx ∈ TxM (where the subscript x denotes the foot of the tangent
vectors):

〈·, ·〉x : TxM× TxM→ R : (ξx, ηx)→ 〈ξx, ηx〉x

with the usual properties of the inner product. Note that, in general, this inner product
depends on the point x, since the tangent space depends on x as well. The norm of a vector
ξx ∈ TxM is naturally defined as

‖ξx‖x = 〈ξx, ξx〉x.

These definitions allow us to define a metric on a manifold and the essential tools of opti-
mization start to appear: scalar product and norms will allow us to control the behavior of
algorithms and to quantify their convergence.

2.2.2 Gradient

Now, we can define the most essential tool of Riemannian optimization, the gradient. The
gradient of a function f :M→ R will be used to build an equivalent of the steepest descent
algorithm.

When working with embedded manifolds of Rm×n, the computation of the gradient is quite
easy: to compute the gradient of f at x, grad f(x), we simply need to compute the classical
(Euclidian) gradient of the function f̄ (the extension of f to Rm×n), at x, ∇xf̄(x), and then
project it onto the tangent plane at x:

grad f(x) = Px∇xf̄(x),

where Px is the orthogonal projector from Rm×n onto TxM.

The gradient is a tangent vector at x and belongs to TxM. Note that this gradient, like the
Euclidian gradient, is the steepest ascent direction (and his opposite is the steepest descent
direction).

2.2.3 Retraction

To decrease a cost function, we need to be able to move in the direction of the gradient, but
staying on the manifold. In the Euclidian space, to move into the direction − grad f(x) =
−∇xf(x), we would simply do something like

xk+1 = xk − α grad f(xk)

for a given α > 0. But in general this is not well defined on a manifold, since a manifold
does not have a vector space structure in general (simply consider the sphere for instance:
following a tangent vector ξx at x using the “+” gives a point x + ξx which does not belong
to the sphere).

To address this issue, the notion of retraction has been introduced. The idea is to have a
cheap way of moving on the manifold in the direction of a tangent vector with just enough
properties so that the usual convergence results of the algorithms in Rm×n will be preserved
onM.

10 CHAPTER 2. ESSENTIAL TOOLS OF RIEMANNIAN OPTIMIZATION

Definition 4 (Retraction). A retraction onM is a smooth function

Rx : TxM→M

such that

• Rx(0x) = x, where 0x is the zero vector of TxM;

• DRx(0x) = ITxM , where D denotes the directional derivative and ITxM the identity
mapping from TxM to TxM.

The idea is that the retraction from x in a direction ξx ∈ TxM, denoted as Rx(ξx), is a point
on the manifoldM obtained by coming from x in the direction ξx.

2.2.4 Steepest Descent

Now that we have this tool, we can define the equivalent of the steepest descent algorithm on
a manifold M. Basically, the idea is to start from a point x0 ∈ M and then to successively
update xk by the following rule

xk+1 = Rxk
(−αk grad f(xk)).

We can see that everything is well defined: the gradient grad f(xk) is computable, −αk grad f(xk)
is well defined since grad f(xk) ∈ TxM (which is a vector space), and Rxk

(−αk grad f(xk))
allows us to “move” in the direction of the gradient, starting at xk and staying on the manifold.

If we are working with a manifold which is identified with the full Euclidian space, that is
M = Rm×n, the retraction is simply the sum Rx(ξx) = x + ξx and the steepest descent
algorithm translates into xk+1 = xk − αk grad f(xk) which is exactly the steepest descent
algorithm in Rn.

2.3 Conjugate Gradient Algorithm

Now that the steepest descent algorithm has been generalized to manifolds, we would like to
generalize the conjugate gradient algorithm. In Rm×n, the iteration scheme reads

sk = − grad f(xk) + βksk−1,

xk+1 = xk − αksk,

with grad f(xk) = ∇f(xk) and for some βk and αk ∈ R.

To generalize this to an abstract manifold M, the problem lies in “− grad f(xk) + βksk−1”.
Indeed, − grad f(xk) is a vector belonging to the tangent space at xk while βksk−1 belongs to
the tangent space at xk−1; because of this, the sum “+” does not make sense in general (since
these are two different vector spaces). To resolve this issue, we need to introduce the notion
of vector transport.

2.3. CONJUGATE GRADIENT ALGORITHM 11

2.3.1 Vector Transport

The role of the vector transport is to be able to deal with tangent vectors in different tangent
spaces, i.e., tangent spaces at different points on the manifold.
Definition 5 (Vector Transport). A vector transport on a manifoldM is a smooth function

T : TxM× TxM→ TM : (ηx, ξx)→ Tηx(ξx)

satisfying a few properties:

• Tηx(ξx) is a tangent vector in TRx(ηx)M (meaning that the transport should be consistent
with the retraction);

• T0x(ξx) = ξx;

• Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

This definition should be understood to be some “parallel vector transport”, i.e., ξx is trans-
ported in parallel at the tangent space of the point Rx(ηx). This definition allows us to work
with tangent vectors at different points on the manifold.

2.3.2 Conjugate Gradient

Now, thanks to the tools of Riemannian optimization—like retractions and vector transports—
it is possible to generalize the conjugate gradient algorithm scheme to an abstract manifold:

ηk = − grad f(xk) + βkTαk−1ηk−1(ηk−1),

xk+1 = Rxk
(−αkηk),

where we use the vector transport to give a meaning to “− grad f(xk) + βkηk−1”. Otherwise,
grad f(xk) and βkηk−1 would belong to different vector spaces.

Again, should we work with M = Rm×n, the retraction is the sum (Rx(ξx) = x + ξx), the
vector transport is the identity (Tηx(ξx) = ξx), and this algorithm will give us the exact
classical (Euclidian) conjugate gradient algorithm (with ηk = sk).

12 CHAPTER 2. ESSENTIAL TOOLS OF RIEMANNIAN OPTIMIZATION

Part I

Improvements of the RCGMC
Algorithm

13

3 | A Dai-Yuan Conjugate Gradi-
ent Algorithm for RCGMC

This chapter is dedicated to the study of a particular type of conjugate gradient algorithm
which has the remarkable property of being globally convergent (towards a critical point). Un-
like other conjugate gradient algorithms, it only uses the weak Wolfe conditions, as opposed—
for instance—to the Fletcher-Reeves conjugate gradient algorithm which is globally convergent
using the strong Wolfe conditions (Sato, 2014). This algorithm is a Riemannian version of
the Dai-Yuan conjugate gradient algorithm (Dai & Yuan, 1999) but extended by Sato to the
Riemannian case (Sato, 2014).

In this chapter, we first briefly state the RCGMC algorithm (Boumal & Absil, 2015), we then
explain this particular conjugate gradient and then perform some numerical comparisons.

3.1 RCGMC

Before getting into the specifics of the new conjugate gradient algorithm, let us begin by
introducing RCGMC.

RCGMC (and RTRMC, see (Boumal & Absil, 2015)) is a low-rank matrix completion algo-
rithm developed by Boumal & Absil. In this algorithm, we look for the low-rank matrix X
that minimizes the following cost function

f(X) =
∑

(i,j)∈Ω
C2
ij(Xij −Mij) + λ2 ∑

(i,j)∈Ω̄

X2
ij (3.1)

where X ∈Mr, for a given value of λ and C. Typically, we will have Cij = 1 for all (i, j) ∈ Ω
and 0 otherwise, while λ will be some small value.

The trick relies on reformulating this problem as an optimization problem on the Grassman
manifold Gr(m, r) of the r−dimensional linear subspaces of Rm. To begin with, let us define
WU as

WU = argminW∈Rr×n

∑
(i,j)∈Ω

C2
ij((UW)ij −Mij) + λ2 ∑

(i,j)∈Ω̄

(UW)2
ij .

It can be shown that for a given U and if λ 6= 0, the solution to this problem is unique, can
be found efficiently and smoothly depends on U. Hence, the problem can be replaced by the
problem of finding U that minimizes

f(U) =
∑

(i,j)∈Ω
C2
ij((UWU)ij −Mij) + λ2 ∑

(i,j)∈Ω̄

(UWU)2
ij . (3.2)

15

16 CHAPTER 3. A DAI-YUAN CONJUGATE GRADIENT ALGORITHM FOR RCGMC

Now, it is useful to notice that every matrix U′ that shares the same column space as U gives
the same cost. Indeed, since only UW products appear in equation (3.2), every U′ such that
it exists V ∈ Rr×r invertible so that U′ = UV leads to the same cost, with WU replaced by
WU′ = WUV = V−1WU. So the cost only really depends on col(U), the column space of
U.

This is by taking into account this invariance that the RTRMC/RCGMC algorithm eventually
minimizes a function defined over the set of r-dimensional linear subspaces (the “col(U)”)
included in Rm, i.e., the Grassman manifold Gr(m, r). A point on this manifold (i.e., a
subspace, say U) can be easily represented by a m × r matrix (U) such that U = col(U).
Numerically, it is suitable to have U orthogonal (such that U>U = Ir). We then eventually
minimize

f : Gr(m, r)→ R : col(U)→
∑

(i,j)∈Ω
C2
ij((UWU)ij −Mij) + λ2 ∑

(i,j)∈Ω̄

(UWU)2
ij .

This can be done efficiently using the now well-developed theory of Riemannian optimization
(see (Absil et al., 2008) for instance) since it can be shown that Gr(m,n) is a smooth Rie-
mannian (quotient) manifold. RTRMC minimizes this function using a trust-region algorithm
while RCGMC uses a conjugate gradient method. Both can be preconditioned to deal with
ill-conditioned problems, and the algorithm is particularly efficient when the matrix M is rect-
angular since the search-space Gr(m,n) is of dimension r(m−r) ≈ mr whereas the dimension
of Mr is r(m + n − r) ≈ r(m + n). So the dimension of the search space is proportional
to min(m,n) (if m > n, we can simply transpose the matrix), while most algorithms have a
search-space dimension proportional to m+ n.

3.2 Conjugate Gradient

As explained in chapter 2, the Riemannian conjugate gradient algorithm updates xk in the
following way

ηk = − grad f(xk) + βkTαk−1ηk−1(ηk−1)

xk+1 = Rxk
(αkηk)

where T is a vector transport (i.e., a mapping from TxM to TyM for x, y ∈ M, see section
2.3.1) and Rx a retraction (see section 2.2.3) where βk is directly computable and αk is
obtained from a linesearch algorithm.

There exist multiple options for the βk parameter and the linesearch algorithm; this chapter
deals with one particular choice and its consequences on the RCGMC algorithm.

3.3 Dai-Yuan Conjugate Gradient

This algorithm uses one ingredient of importance, a scaled vector transport, defined as

T 0
η (ξ) = ‖ξ‖x

‖Tη(ξ)‖Rx(ξ)
Tη(ξ),

3.4. LINE-SEARCH ALGORITHM FOR THE WEAK WOLFE CONDITIONS 17

where T is the vector transport associated with the retraction R to be used in the algorithm.
Typically, the vector transport will derive from the retraction R directly by

Tη(ξ) = DRx(η)[ξ]

where x is the foot of η and ξ.

Using this ingredient, we are able to prove the global convergence of the conjugate gradient
algorithm (Sato, 2014) if the parameter βk is computed such as

βk+1 =
‖ grad f(xk+1)‖2xk+1

〈grad f(xk+1), T (k)
αkηk(ηk)〉xk+1 − 〈grad f(xk), ηk〉xk

where
T (k)
αkηk

(ηk) =
{
Tαkηk

(ηk) if ‖Tαkηk
(ηk)‖xk+1 ≤ ‖ηk‖xk

T 0
αkηk

(ηk) otherwise

and where the search direction is computed using this vector transport:

ηk+1 = − grad f(xk+1) + βk+1T (k)
αkηk

(ηk).

This is one of the Riemannian versions of the β-rule proposed by Dai & Yuan (1999) but only
this version is known to have a global convergence property in the Riemannian setup. Re-
garding the function f , a sufficient condition (Sato & Iwai, 2013) to ensure global convergence
is that f is smooth and defined on a compact set. In our problem, f is indeed smooth (see
(Boumal & Absil, 2015)) and the Grassman manifold is compact (Milnor & Stasheff, 1974).
Hence, global convergence (towards a critical point) is guaranteed.

Using such definition, the conjugate gradient algorithm can be applied (see for instance Absil
et al. 2008) and one needs to only meet the weak Wolfe conditions for the linesearch algorithm
to guarantee global convergence.

Note that this algorithm can also be preconditioned; see appendix A for further details.

3.4 Line-Search Algorithm for the Weak Wolfe Conditions

The weak Wolfe conditions need to be met when the linesearch is performed, meaning that
the αk such that

αk ≈ min
α>0

f(Rxk
(αηk))

needs to satisfy the following two properties

f(Rxk
(αkηk)) ≤ f(xk) + c1αk〈grad f(xk), ηk〉xk

, (3.3)

〈grad f(Rxk
(αkηk)), DRxk

(αkηk)[ηk]〉Rxk
(αkηk) ≥ c2〈grad f(xk), ηk〉xk

, (3.4)

with 0 < c1 < c2 < 1.

To find αk that satisfies these two conditions, we must develop a linesearch algorithm. Al-
gorithm 1 describes the algorithm used to meet these weak Wolfe conditions. It is directly
derived form its Euclidian version (see (Burke, 2014) for instance). Note that this is actually
a heuristic, since we are not aware of any proof of convergence for this algorithm. But it

18 CHAPTER 3. A DAI-YUAN CONJUGATE GRADIENT ALGORITHM FOR RCGMC

is clear that the algorithm terminates only if the two conditions are met. Note that it per-
forms extremely well in practice, but it must be used with caution. In practice, note that the
maximum number of iterations of this algorithm is set to 25.

Algorithm 1 A Weak-Wolfe Linesearch bisection algorithm that returns α matching the
weak Wolfe conditions (3.3) and (3.4) (with αk = α, xk = x and ηk = η).
procedure Weak-Wolfe Conditions Linesearch (0 < c1 < c2 < 1, β = 0, α = 1,
γ =∞, η, x)

while True do
if f(Rx(αη)) > f(x) + c1α〈grad f(x), η〉x then

γ ← α
α← 1

2(β + γ)
else

if 〈grad f(Rx(αη)), Tαη(η)〉Rx(αη) < c2〈grad f(x), η〉x then
β ← α

α←
{

2β if γ =∞
1
2(β + γ) otherwise

else
Break and return α.

end if
end if

end while
end procedure

3.5 Numerical Results

We now ask ourselves if this modification can speedup the solution of the low-rank matrix
completion problem. This turns out, quite surprisingly, to be often true: using this new
conjugate gradient scheme combined with algorithm 1 seems to give better performances
than any other CG scheme and it is often faster than RTRMC (but this depends on the run
and this is not always the case).

We decided to compare this Dai-Yuan conjugate gradient algorithm (referred to later as
CGDY) to the very simple steepest descent (SD), to RCGMC (conjugate gradient with the
Hestenes-Stiefel β-rule, i.e., the default one for RCGMC) and to RTRMC (trust-region).
After investigations, others β-rules give performances very similar to those of RCGMC. In
the following numerical experiments, gradient tolerance is set to 10−8 and matrices are always
observed with an oversampling of 4 (meaning that the ratio r(m+n−r)

mn = 4, where r(m+n− r)
is the dimension of Mr). SD and RCGMC use an Armijo backtracking procedure as a
linesearch, while CGDY uses the weak Wolfe algorithm described before. For the weak Wolfe
linesearch algorithm, we use c1 = 10−4 and c2 = 0.9. The value of c1 corresponds to the
sufficient decrease parameter of the Armijo backtracking used in SD and RCGMC (Boumal
& Absil, 2015). Typical values for c2 range from 0.1 to 0.9 (see (Wright & Nocedal, 1999)
in the Euclidian case, for instance). We will use the later (even though the choice c2 = 0.1
is quite common for non-linear Euclidian CG algorithms (Wright & Nocedal, 1999)), as it
seems that lower values tend to give worse results (regarding the time the algorithm takes to
converge; this is simply due to the fact that the linesearch algorithm spends more time in the
first iterations, trying to meet stronger conditions). We will not study these two parameters

3.5. NUMERICAL RESULTS 19

in more details, but an extension of the present work could be to precisely study and tune
the choice of c1 and c2.

Low-rank matrices are created by first computing two thin rectangular factors U and V of
sizes respectively m× r and r×n and filled with i.i.d. Gaussian random variables such as the
product UV is filled with zero-mean and unit-variance Gaussian variables. We then record
the RMSE between X and the original matrix UV as a function of time which will be depicted
in the forthcoming figures. This can be done efficiently since we have a low-rank factorization
of both the target and the “current” approximation in memory. Indeed, if X = AB and
M = UV, we have (Boumal & Absil, 2015)

‖X−M‖2`2 =
∣∣∣∣∣
∣∣∣∣∣[A U

]
·
[

B
−V

]∣∣∣∣∣
∣∣∣∣∣
2

`2

and since the `2 or Frobenius norm is invariant to unitary matrices, we can compute the
thin QR-factorization of both factors

([
A U

]
= Q1R1 and

[
B> −V>

]
= Q2R2

)
and then

simply compute the Frobenius norm ‖M−X‖`2 = ‖Q1R1R>2 Q>2 ‖`2 = ‖R1R>2 ‖`2 . The RMSE
is then defined by

RMSE(M,X) =

√
‖X−M‖2`2

mn
.

Numerical experiments are performed sequentially on a desktop computer with a 2.8 GHz
dual core Intel Core i7 processor, 8 Gb of RAM and Matlab R2014a using Mac OS X 10.10.3.

Medium Scale Matrix Completion In this first very simple experiment, we sample a
5 000×5 000 rank-10 matrix uniformly at random. Figure 3.1 depicts the performances differ-
ences between the four algorithms. It seems from this experiment that CGDY performs quite
well compared to the other ones. As it will be the case in the following, we can see that the
convergence of the algorithm is very “stable” and linear. This is due to the linesearch which
always needs one single iteration to converge after the first run (if using the previous linesearch
solution as the initial guess). This is quite remarkable and leads to good performances.

Large Scale Matrix Completion This second experiment is the same as the first one but
on larger matrices. Figure 3.2 presents the convergence of the algorithms on a 50 000× 50 000
matrix. Clearly, CGDY seems to outperform all other algorithms.

Rectangular Matrix Completion This third experiment (figure 3.3) presents the per-
formances of the four algorithms on the completion of a very rectangular matrix of size
10 000 × 100 000 and of rank 10. In this case, it seems that CGDY does not perform as well
as before and has performances very similar to the ones of the other algorithms. Still, it out-
performs RCGMC but it is slower than the steepest descent algorithm. It seems hard to find
an explanation for the difference between this result and the previous ones where CGDY was
always fastest. Indeed, the difference cannot come from a large computational difference: the
main difference between the Armijo linesearch and the weak Wolfe one is the computation of
the gradient, and it only requires a few operations (of complexity O (|Ω|r)) additional to the
one needed for the cost. The main difference with the previous experiments is the reduction
of the size of the search-space, which is approximately proportional to mr. It seems that the
weak Wolfe linesearch combined with the Dai-Yuan β-rule is more useful and performs better

20 CHAPTER 3. A DAI-YUAN CONJUGATE GRADIENT ALGORITHM FOR RCGMC

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−8

10
−6

10
−4

10
−2

Time [s]

R
M

S
E

RTRMC

CGDY

SD

RCGMC

Figure 3.1: Medium scale matrix completion: 5 000×5 000 rank-10 matrix completion problem.

0 20 40 60 80 100 120 140

10
−8

10
−6

10
−4

10
−2

Time [s]

R
M

S
E

RTRMC

CGDY

SD

RCGMC

Figure 3.2: Large scale matrix completion: 50 000×50 000 rank-10 matrix completion problem.

3.5. NUMERICAL RESULTS 21

when the search-space is larger while an Armijo backtracking and a simple steepest-descent
performs better on smaller search-spaces.

Note that these first three experiments are very “stable” in a sense that running the experi-
ments again with other random matrices leads to qualitatively similar results.

0 10 20 30 40 50 60 70

10
−8

10
−6

10
−4

10
−2

Time [s]

R
M

S
E

RTRMC

CGDY

SD

RCGMC

Figure 3.3: Rectangular matrix completion: 10 000×100 000 rank-10 matrix completion prob-
lem.

Ill-Conditioned Matrix Completion This experiment (greatly inspired from (Boumal
& Absil, 2015)), aims to assess performances of the algorithm when the underlying low-rank
matrix is ill-conditioned. The problem is that the ill-conditioning of UV translates into an
(even worse) ill-conditioned hessian at the optimal value, slowing down convergence. Under
such scenario, the preconditioner allows the algorithm to keep a good convergence rate while
non-preconditionned methods almost always fail to converge in a reasonable amount of time.
In this experiment (fig. 3.4), we create a 1 000× 1 000 matrix of rank 10 with singular values
decaying exponentially from

√
mn to

√
mne−5. The matrix is observed with an oversampling

of 5. Figure 3.4(a) depicts convergence of the algorithm without the preconditionner while
figure 3.4(b) allows us to see the very strong effect of the preconditionner. It seems clear from
this experiment that the preconditionner is efficient and that the CGDY algorithm takes great
advantage of using it.

One thing worth mentioning is the qualitative difference of the asymptotic rate of convergence
of the CGDY algorithm compared to RCGMC (or even to SD). It seems that they exhibit a
much better rate of convergence than CGDY. We were unfortunately not able to find a simple
explanation to this. After a lot of investigations, the only conclusion is that it does not depend
on the linesearch algorithm (a simple backtracking algorithm giving—qualitatively—the same
convergence rate) but only on the difference in the search direction in CGDY.

Also, note that this experiment is much less “stable” than the previous ones, in the sense that
running the experiment again with other random matrices often leads to different results:
sometimes one of the algorithm does not converge, sometimes most of them do not. We tried
to pick the result that best represents relative differences between the algorithms when they

22 CHAPTER 3. A DAI-YUAN CONJUGATE GRADIENT ALGORITHM FOR RCGMC

all converge. Still, when it converges, CGDY always pictures this very “linear” convergence
rate.

0 5 10 15 20 25 30 35 40

10
−6

10
−4

10
−2

Time [s]

R
M

S
E

RTRMC

CGDY

SD

RCGMC

(a) Without the preconditionner

0 1 2 3 4 5 6

10
−6

10
−4

10
−2

Time [s]

R
M

S
E

RTRMC

CGDY

SD

RCGMC

(b) With the preconditionner

Figure 3.4: Ill-conditionned matrix completion: 1 000 × 1 000 rank-10 matrix completion
problem of a matrix observed with an oversampling of 5 and with a condition number of e5.

3.6 Conclusions

Even though the last experiments do not allow us to formally conclude about the performances
of the CGDY scheme, the first ones are a lot more clear, and we can conclude that CGDY has
in average better performances than RCGMC and RTRMC, at least in favorable situations.
In the worst cases, their performances will be similar (but in this case, it clearly depends on
the run).

4 | High Performance Computing

In this chapter, we study the problem of the parallelization of the RTRMC/RCGMC algo-
rithm. For the sake of simplicity, we will focus ourselves on the parallelization of RCGMC.
The parallelization of RTRMC would require the parallelization of the hessian, which appears
to be quite tedious.

In this document, we will also focus on the parallelization of the cost function and the gradient.
Since other operations (retractions, transports, etc.) are mostly basic matrix operations, it is
assumed that Matlab can natively efficiently take care of it.

4.1 The Main Parts of RCGMC

The execution of the RCGMC algorithm requires the computation of the cost and the gradient.
Assume we are at point U, an orthogonal basis representing a linear subspace of dimension r
of Rm; we are given a mask Ω, C is the weight matrix (usually uniform on Ω), M the data
(i.e., the known entries on the mask), and λ is the regularization parameter.

Without going into too much details, all the operations required to compute the cost and the
gradient can be summarized as follows:

1. Build and solve the n linear systems of size r × r[
U> diag(Ĉi)U + λ2Ir

]
WU,i = (U>[C(2) �M])i, (4.1)

build WU and compute the norm ‖WU‖2`2 . Subscripts i indicate the ith column of the
corresponding matrix, � indicates entry-wise product and C(2) is the entry-wise square
of C. We also define Ĉ with Ĉij = C2

ij − λ2 ∀(i, j) ∈ Ω and 0 otherwise ;

2. Compute the sparse product UWU on the mask Ω and compute its Ω-Frobenius norm
‖UWU‖2Ω =

∑
(i,j)∈Ω(UWU)2

ij ;

3. Compute the sparse residual matrix RU on the mask Ω

RU = Ĉ� (UWU −M)− λ2M

as well as the Ω-Frobenius norm ‖C� (UWU −M)‖2Ω;

4. Compute the full product RUW>
U (where RU is sparse while W>

U is full);

5. Compute the full and symmetric product WUW>
U;

6. Compute the full product U(WUW>
U).

23

24 CHAPTER 4. HIGH PERFORMANCE COMPUTING

The cost and the gradient can then be easily computed using

f(U) = 1
2‖C� (UWU −M)‖2`2 + λ2

2
(
‖WU‖2`2 − ‖UWU‖2Ω

)
and

grad f(U) = RUW>
U + λ2U(WUW>

U).

Note that in practice, they are both scaled by 1
|Ω| for numerical convenience.

4.2 Parallelization Strategy

To better take advantage of the sparsity and to be able to fine tune every part of the algorithm,
the idea is to perform all the heavy computations using compiled C-mex code and to use
OpenMP (The OpenMP ARB, 2015) for the parallelization of the algorithm.

A note about how to store the matrices In general, matrices are stored by columns
first: we store the matrix of size m × n as a long array of length mn beginning by the first
column, followed by the second one, etc.

When dealing with sparse matrices, there are typically three arrays describing a matrix :

• the V array simply stores each non-zero element of the matrix, stored by column first.
V[k] is the kth element of the sparse matrix;

• the Jc array is such that the jth column begins at the index Jc[j] and ends at index
Jc[j + 1]− 1 of the vector V;

• the Ir array is such that Ir[k] is simply the row of the kth element of V, V[k].

This is the format Matlab uses to store matrices, called the CSC format, and it has the
advantage of allowing O (1) access to every column of the matrix.

But when computing RUW>
U, the optimal storage would be exactly the opposite: RU should

be stored by rows first (the CSR format) where each row can be accessed in O (1) and W>
U

should be stored by columns, meaning WU should be stored by rows. This is optimal since
it allows to compute each element of resulting matrix as a dot product between two vectors
(one row of RU and one column of W>

U) with all elements stored consecutively in memory.
Because of that, in the following, we will do the necessary so that RU and WU are both
stored by rows first.

The linear systems We need to solve equation (4.1) for each column of WU.

To do so1, we first build the (symmetric) coefficients matrix. Taking advantage that

U> diag ĈiU =
(√

diag ĈiU
)> (√

diag ĈiU
)
,

we can efficiently build U> diag ĈiU using the BLAS function dgemm. Note that this requires
Ĉi ≥ 0. Then, the term λ2Ir is added. If λ > 0, this matrix is always symmetric and positive

1This paragraph describes the method already used in RTRMC. See http://perso.uclouvain.be/nicolas.
boumal/RTRMC/.

http://perso.uclouvain.be/nicolas.boumal/RTRMC/
http://perso.uclouvain.be/nicolas.boumal/RTRMC/

4.2. PARALLELIZATION STRATEGY 25

definite, and we can compute its Cholesky factorization using the dpotrf function. In the
mean time, the right-hand-side of the system is computed efficiently thanks to the sparsity
and finally the solution is computed using the BLAS dpotrs function.

The previous procedure has been incorporated into a single function which is then called
in parallel to solve all linear systems efficiently. Note that this requires multiple temporary
arrays to store intermediate results (one array per thread, otherwise collisions and data-race
can occur) but the time required to allocate these arrays is almost negligible.

UWU Computing UWU on the mask Ω can be done efficiently thanks to the sparsity. But,
because this is used to compute RU afterwards, we want the resulting product to be stored
by rows first, so that it will be easy to compute RU. To do so efficiently, we need to have
access to each of the rows of RU in O (1) which basically requires us to have access to the
sparsity of “Ω>” (i.e., the mask we would have if we were working with M> for instance)
and the corresponding index-vectors Ir and Jc. But the advantage of that is that we can
precompute it “offline” before the parallel computation, once and for all, since this simply
requires transposing the sparse data matrix M. Using this sparsity, the strategy is simply to
parallelize over the rows of UWU. The norm ‖UWU‖2Ω is also computed at the same time
since it simply requires summing the squares of the elements of UWU.

RU Computing RU is done using parallelization over the rows of RU. Since we have access
to UWU stored by rows first, and to C stored by rows first too (we simply need to compute
it once and for all and then feed it to the algorithm), computing this component-wise sparse
product is easy and fast. The norm ‖C� (UWU−M)‖2`2 is also computed in the meantime.

RUW>
U Computing RUW>

U efficiently in parallel appears to be the most difficult task. As
explained earlier, we have to work with RU stored by rows first and W>

U stored by columns
first. RU is already stored as it should be; regarding WU, we simply have to transpose the
full r × n matrix, which is quite easy and can be done very quickly.

Once this is done, the product RUW>
U is basically based on 2 nested loops: one over the

columns followed by one over the rows. For each row and column, the dot product can easily
be computed since the 2 matrices are stored in the right way. To efficiently parallelize the
algorithm, we have to parallelize it over the columns of RUW>

U, since parallelization over the
rows would have lead to a very tight index set (from 1 to r instead of from 1 to m) and would
give to a much less parallelizable algorithm.

WUW>
U The product WUW>

U is cheap to compute, thanks to the BLAS dsyrk function.
Parallelization is possible, but not particularly useful, since this is one of the cheapest opera-
tion of the algorithm.

U(WUW>
U) Finally, the last operation is the U(WUW>

U) product. This is done simply
using the BLAS dsymm subroutine. This is also a very cheap operation that does not require
any parallelization.

More details on the implementation can be found in appendix B.

26 CHAPTER 4. HIGH PERFORMANCE COMPUTING

4.3 Numerical Results

We now analyze the performances of the parallel implementation. All the following tests were
done on a 6 core Intel Xeon CPU E5-1650 v2 @ 3.50GHz with 64 Go of ram using Matlab
R2014a and a 64 bit Linux machine.

Figure 4.1 depicts the time taken by all operations of the algorithm. Clearly, the following 3
operations are the most expensive ones:

• Building and solving the n linear systems: about 50% of the execution time;

• Computing UWU on Ω: about 25% of the time;

• Computing RUW>
U: about 15-20% of the time.

Other operations are very cheap and can be mostly ignored.

W UW R RWt WWt UWWt
0

1

2

3

4

5

6

7

Operation

T
im

e
 [

s
]

Figure 4.1: The time taken by all operations of the cost and gradient computation on a
300 000 × 1 000 000 rank-10 matrix completion problem observed with an oversampling of 4.
The colors indicate the number of core, from 1 (at the top in white) to 6 (at the bottom in
black). Heights give the time taken by each part of the algorithm. Bars are not stacked; for
instance, regarding the computation of W, one should read that the time taken with 1 core
is approximately 7 seconds while the time taken with 6 cores is approximately 1.5 seconds.
W includes the computation of WU itself, the computation of ‖WU‖2Ω and the transposition
of WU. Note that in practice, these 2 last operations account for less than 2% of the total
when using 6 cores. Also note that the time of the U(WUW>

U) computation is not zero but
indistinguishable at this scale. These timings are the average of 5 successive runs.

Because of this, we will analyze the speedup of both the full algorithm and of these three
operations in particular.

The speedup of an algorithm (or some part of it) is defined as the ratio between the execution
time with 1 core and the execution time with n cores, as a function of n:

speedup(n) = time(1)
time(n) .

4.3. NUMERICAL RESULTS 27

A very well parallelized algorithm would have an optimal speedup(n) = n: each addition of
core leads to an optimal performances increase.

Using the approach described before, we obtain the speedups depicted at figure 4.2, with the
execution timings presented in table 4.1 for the computation of the cost and the gradient.
These timings are computed as the mean of 5 successive runs (on the same matrix and in the
same conditions). Note that the actual values of U, C, λ, M etc. do not have a real impact
on the performances and only the size of the matrices really matters. We can conclude from
this graph that the parallelization is very good in general, but slightly not optimal. Note that
the fact that the global speedup is slightly below the 3 others is that a few operations are
still not parallelized (like the transposition of WU, the WUW>

U product and some other non
significant operations). Reasons to this “sub-optimality” can be multiple, but it is likely due
to some overhead and false cache-sharing.

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

S
p
e
e
d
u
p

cores

(a) The speedup of the algorithm

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

S
p
e
e
d
u
p

cores

(b) The speedup of the computation of WU (includ-
ing only the solutions of the n linear systems, but not
the norm ‖WU‖2Ω nor the transposition of WU.).

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

S
p
e
e
d
u
p

cores

(c) The speedup of the product UWU over Ω.

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

S
p
e
e
d
u
p

cores

(d) The speedup of the RUW>
U product.

Figure 4.2: Speedup of the parallel implementation of the cost and gradient on a
300 000 × 1 000 000 matrix of rank 10, with an oversampling of 4. We can observe that
the speedup is almost optimal.

Overhead can occur when multiple threads try to access the same part of the (shared) memory
at the same time, resulting in what is called “data-race”. This do not lead to errors, but it
might slow down a lot the algorithm.

28 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Full Matlab 1 core 2 cores 3 cores 4 cores 5 cores 6 cores
Timing [s] 14.06 15.10 8.13 5.56 4.29 3.61 3.09
Speedup 1 1.85 2.71 3.51 4.18 4.87

Table 4.1: Timings for the parallel experiment on a 300 000 × 1 000 000 matrix of rank 10
observed with an oversampling of 4. The full Matlab implementation uses Matlab for
most of the algorithm, but also some C-mex compiled functions for the resolution of the
linear systems as well as the computations involving sparse matrices.

False cache-sharing is a more insidious problem. Cache memory is an intermediary storage
level between the usual memory (RAM) and the register where computations are performed.
When a thread tries to access some memory, it usually loads in the cache memory (close to
the corresponding processor) the adjacent elements in the array in order to make (potential)
further operations faster. But when multiple threads work on data that are close in memory,
this may lead to non-useful data being copied in cache, which can cause significant bandwidth
saturation.

Still, the results are quite good in overall, since we almost reach a perfect speed-up. Note
that using such an implementation with 1 or 2 cores often leads to better performances that
the full Matlab implementation (which can automatically use all the available cores on the
computer). This is important, since it demonstrates that our implementation does not only
scale well but is also efficient from the beginning (i.e., with 1 core).

4.4 A Parallel Dai-Yuan Conjugate Gradient

The advantage with this parallel version of RCGMC is that it is well suited for the CGDY
algorithm using the weak Wolfe linesearch. Indeed, this linesearch requires multiple compu-
tations of both the cost and the gradient and the conjugate gradient also require both the cost
and the gradient. So this parallel version should be particularly well suited for this method.

Using this parallel implementation, we run the full RCGMC algorithm (still using Manopt
(Boumal et al., 2014) with a full Matlab implementation for all operations other than the cost
and the gradient) to see the global effect of the parallel implementation on the convergence
curves of the algorithm. Convergence of the algorithm using a number of cores from 1 to
6 is depicted on figure 4.3 and compared to the full Matlab implementation2 (denoted by
CGDY).

We can clearly observe that the parallelization has a significant impact on the performances of
the algorithm but, as expected, increasing the number of cores does not allow us to drive the
execution time towards zero. This is due to the remaining operations (transports, retractions,
scalar products, etc.) that are done in full Matlab and on which we do not really have
any control. Still, this implementation is significantly better than the original one and the
speedup with 6 cores is slightly above 4, which is already quite good.

An extension of this work would be to do the same for the hessian, in order to have an efficient
parallelizable RCGMC algorithm.

2Available at http://perso.uclouvain.be/nicolas.boumal/RTRMC/

http://perso.uclouvain.be/nicolas.boumal/RTRMC/

4.4. A PARALLEL DAI-YUAN CONJUGATE GRADIENT 29

0 500 1000 1500 2000 2500
10

−8

10
−6

10
−4

10
−2

10
0

CGDY 123456

Time [s]

R
M

S
E

Figure 4.3: 300 000 × 1 000 000 rank-10 matrix completion observed with an oversampling
of 4. CGDY is the regular implementation of RCGMC, combined with the Dai-Yuan conju-
gates gradient algorithm (without any restriction on the number of cores used, so Matlab
may use multiple cores in some part of the algorithm). Other lines are the parallel C-mex
implementation, where the numbers indicate the number of cores used by the algorithm. It
is not surprising that CGDY is slightly better than the 1-core implementation since Matlab
natively uses multiples cores on some operations.

30 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Part II

Robust Low-Rank Matrix
Completion

31

5 | Robust Low-Rank Matrix Com-
pletion

As explained in section 1.3, low-rank matrix completion is often solved by minimizing the `2
error between the data and a low-rank matrix X. For instance, using Riemannian optimiza-
tion, one can solve

min
X∈Mr

‖PΩ(X−M)‖`2

(see for instance Vandereycken (2013)).

All formulations that rely on the Frobenius norm however suffer from one drawback: even
though they are robust to additive Gaussian noise, they are not well suited to recover the
underlying low-rank matrix when the noise becomes non-Gaussian. Here we focus on the
situation where only a few of the observed entries, termed outliers, are perturbed; that is,

M = M0 + S, (5.1)

where M0 is the unperturbed data matrix of rank r and S is a sparse matrix. For instance,
consider recovering the best rank-1 approximation of the following matrix

Mx =
(

2 −1 + x
4 −2

)
.

If x = 0, this matrix is rank-1 since, for instance,

M0 =
(

2 −1
4 −2

)
=
(

1
2

)
·
(
2 −1

)
.

But when x 6= 0, this is not the case, and finding the rank-1 matrix that minimizes the `2
error leads to fundamentaly different solutions.

To observe that, we can simply compute, for each x, the rank-1 SVD of Mx (which is the
solution an `2 method minimizing ‖Mx −X‖`2 would return) and then compute the RMSE
with respect to the original matrix M0. This is depicted in figure 5.1, and we can see that
the error starts to grow as soon as x 6= 0.

However, if the method was able to find out that only the top right entry of Mx is corrupted
by noise, then it would be able to recover M0 exactly by removing the top right entry from
the mask Ω and performing low-rank matrix completion. More generally, in the problem of
completing from its know entries Ω a matrix M generated as in equation (5.1), the ability of
detecting the outliers in PΩ(M) (i.e., the entries affected by the sparse matrix PΩ(S)) and
removing those entries from the mask Ω would open the way for an exact recovery of the
rank-r matrix M0.

33

34 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

x

R
M

S
E

Figure 5.1: The error between the recovered matrix and the original one when minimizing the
`2 norm, as a function of x. We can clearly observe that when using an `2 loss function, even
a small perturbation on a single entry of the matrix can lead to a large error with respect to
the original matrix.

One solution to solve this problem in general would be to minimize the number of different
entries between the data and the recovered matrix. In this context, one would like to solve

min
X∈Mr

‖PΩ(X−M)‖`0 (5.2)

where the `0 “norm” is defined as

‖X‖`0 = #{(i, j) : Xij 6= 0}.

But this problem seems hard, since the objective function is not even continuous in X.

It is well known in the compressed sensing community that the tightest convex relaxation of
the `0 norm is the `1 norm: assume we work in R with x ∈ [−1, 1]. Hence we simply minimize
|x|`0 . In this case, it is easy to see that the `1 norm, |x|, is the tightest convex relaxation of
the `0 norm, |x|`0 . Even though this does not prove anything, it allows to give some insight
of why minimizing the `1 norm often gives the same solution as minimizing the `0 norm and
why this is the right relaxation.

The problem we want to solve can then be stated as.

min
X∈Mr

‖PΩ(X−M)‖`1 . (5.3)

5.1 Previous work

Matrix completion in the presence of outliers has been considered in several papers.

Chen et al. (2011) studied the problem of low-rank matrix completion where a large number
of columns are arbitrarily corrupted. They showed that only a small fraction of the entries are
needed in order to recover the low-rank matrix with high probability, without any assumptions
on the location nor the amplitude of the corrupted entries.

Both Li (2013) and Chen et al. (2013) studied a harder problem, when a constant fraction of
the entries (not the columns) of the matrix are outliers. They studied what conditions need

5.1. PREVIOUS WORK 35

to be imposed in order for the following convex optimization problem

min γ‖X‖∗ + ‖E‖`1
subject to PΩ(X + E) = PΩ(M)

to exactly recover the underlying low-rank matrix (with ‖ · ‖∗ the nuclear norm). Basically,
they showed that there exist universal constants such that with overwhelming probability the
solution of the problem is equal to M on the mask Ω. In the close context of low-rank PCA,
Candès et al. (2011) was also able to solve the same problem. The advantage of such an
algorithm is that it is convex and can then be analyzed thoroughly.

This robust formulation has been improved to deal with Gaussian noise (Hastie, 2012), leading
to the following convex optimization problem

min λ‖X‖∗ + ‖E1‖`1 + ‖E2‖`2
subject to PΩ(X + E1 + E2) = PΩ(M)

.

He et al. (2011) developed a robust version of the GROUSE algorithm (Balzano et al., 2010),
named GRASTA, which aims at solving the problem of robust subspace tracking. Their
algorithm can be casted to solve problems formulated as

min ‖PΩ(S)‖`1
subject to PΩ(UV + S) = PΩ(M)

U ∈ Gr(m, r)
V ∈ Rr×n

where Gr(m, r) is the Grassman manifold, i.e., the set of linear r-dimensional subspaces of
Rm. GRASTA solves this problem by first building the augmented Lagrangian problem, and it
then solves it by alternating between V, his dual variables and U and by performing steepest
descent on the Grassman manifold. The advantage of their algorithm is that it is designed to
tackle the problem of online subspace estimation from incomplete data, hence it can also be
casted to solve online low-rank matrix completion where we observe one column of the matrix
M at a time.

Nie et al. (2012a,b) solved a slightly more general problem where all norms become arbitrary
p-norms

minλ‖X‖pSp
+ ‖PΩ(X−D)‖p`p ,

where ‖X‖pSp
=
∑min(m,n)
i=1 σpi (X) and ‖X‖p`p =

∑m,n
i=1,j=1 |Xij |p. The algorithm used to solve

this non-convex program (when p < 1) is, again, an augmented Lagrangian method. We were
unfortunately unable to obtain or write an efficient implementation of this algorithm since it
requires the storage of the full m×n matrix, as well as SVD of full matrices of this size. This
formulation, however, is efficient for moderate size problems.

Yan et al. (2013) solved `2 problems of the form

min
X∈Mr

‖PΩ(X−M)‖`2

where the mask Ω is adapted at each iteration to remove the suspected outliers. The idea is
to first solve the problem with the original mask Ω, detect outliers, adapt the mask, and then
solve the problem again until convergence. Intermediate problems are handled using RTRMC
(Boumal & Absil, 2011).

36 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

Yang et al. (2014) studied the problem of robust low-rank matrix completion using a non-
convex loss-function. They solve the following problem

min
X∈Rm×n:rank(X)≤r

σ2

2
∑

(i,j)∈Ω

(
1− exp

(
−(Xij −Bij)2/σ2

))
,

where the rank-constraint is relaxed using the now standard nuclear-norm heuristic.

Finally, Klopp et al. (2014) studied the optimal reconstruction error in the case of matrix
completion, where the observations are noisy and column-wise or element-wise corrupted and
where the only piece of information needed is a bound on the matrix entries. They provided
a range of (optimal) estimators to solve such problems with guarantees.

5.2 Our Contribution

In this chapter, we propose and try to analyze a few methods to solve this problem.

The first method uses the RTRMC algorithm and the weights present in the objective function
to emulate an `1 norm. Even though we have good theoretical convergence guarantees, the
intermediate `2 problems appear to be challenging to solve accurately.

The second one is a very simple alternating linear minimization method. The advantage is
that the method is very easy to implement, but it suffers from a very slow convergence due
to the time one iteration takes.

Finally, the last method is based on Riemannian optimization and smoothing techniques.
The idea is to smooth the `1 norm and to solve the resulting problem using optimization on
manifolds. Clearly, this method seems the most “scalable” and robust one, as it is able to
successfully solve large scale problems where the data contain very strong outliers.

5.3 Iteratively Reweighted Least-Squares Method

This method, called Iteratively Reweighted Least-Squares (IRLS), is an easy way to solve
problems by successively solving multiple least-squares problems.

5.3.1 Convergence of the IRLS

Let us assume we are interested in solving the following problem

min
X∈Mr

∑
(i,j)∈Ω

h (|Xij −Mij |)︸ ︷︷ ︸
Ch(X)

, (5.4)

where h : R+ → R is some function. In the `2 case we have h(x) = x2, while in the `1 case
we have h(x) = x. In this section, we will keep things general and make as few assumptions
as possible on h.

5.3. ITERATIVELY REWEIGHTED LEAST-SQUARES METHOD 37

The IRLS method attempts to solve this problem by successively solving multiple weighted
least-squares problems like

min
X∈Mr

∑
(i,j)∈Ω

wij (Xij −Mij)2 .

This method has then the advantage of only requiring to solve (weighted) least-squares prob-
lems, which is something many algorithms can do.

In short, the algorithm will create a sequence of iterates {X(k)}Kk=1 by solving

X(k+1) = argminX∈Mr

∑
(i,j)∈Ω

wij
(
X(k)

)
(Xij −Mij)2 .

Because we want this method to have the same optimal value as the original problem, we
need to choose (Aftab & Hartley, 2015)

wij(X) = h′(|Xij −Mij |)
2|Xij −Mij |

.

Still, this does not prove that the algorithm will converge towards a critical point of (5.4).

The most important ingredient to ensure convergence of the algorithm is that h has to be
such that x→ h(

√
x) is concave. Indeed, in this case, finding X(k+1) such that

∑
(i,j)∈Ω

wij
(
X(k)

) (
X

(k+1)
ij −Mij

)2
<

∑
(i,j)∈Ω

wij
(
X(k)

) (
X

(k)
ij −Mij

)2

induces a decrease in (5.4) (Aftab & Hartley, 2015), i.e.,∑
(i,j)∈Ω

h
(
|X(k+1)

ij −Mij |
)
<

∑
(i,j)∈Ω

h
(
|X(k)

ij −Mij |
)
.

Aftab & Hartley (2015) formally proved that under the following conditions on h, the IRLS
algorithm converges towards a critical point of the original problem (5.4):

1. h is continuous;

2. x→ h(
√
x) is concave and differentiable for x ≥ 0;

3. the function
w→W (w) = argminX∈Mr

∑
(i,j)∈Ω

wij(Xij −Mij)2

is a continuous function of the weights w

4. the sublevel set {X : Ch(X) ≤ Ch(X(0))} is bounded.

5.3.2 The Choice of the h Function

In order to have a convergent method, we need to carefully choose the h : R+ → R function.
Aftab & Hartley give a wide range of interesting function. Unfortunately, the h function
corresponding to the absolute value, h(x) = x, is not among these functions, since x →

38 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

h(
√
x) =

√
x is not differentiable at 0. In this document, we will thus focus on the Pseudo-

Huber function defined by1

h : R+ → R : x→ h(x) =
√
δ2 + x2.

His derivative is given by h′ such that

h′(x) = x√
δ2 + x2

and the weights are thus given by

wij(X) = 2√
δ2 + |Mij −Xij |

for a given δ which will be a parameter of the algorithm. The value δ is actually some
regularization, since it controls the non-differentiability of h around 0. The smaller the δ, the
closer h is to x→ |x|.

We can then easily check which conditions are met in our problem:

1. h is continuous;

2. x→ h(
√
x) is concave;

3. W (w) is continuous since this is a least-squares problem and the weights are strictly
positive;

4. the fourth condition is not garanteed to be met in all cases. This typically depends on
the data. There exist many pathological cases where this will not be met; consider for
instance the 2 × 2 rank-2 matrix completion where we only observe one single entry.
This obviously gives us a non-bounded set of rank-2 solution (with a cost Ch(X) = 0).
In the following, we will then assume that this fourth condition is met. Intuitively, if
the mask is uniform with enough entries and if the rank r is at most equal to the rank
of M, it seems that the sublevel set {X : Ch(X) ≤ Ch(X(0))} should be bounded. The
addition of some noise (like a uniform Gaussian noise) can also help to have a bounded
sublevel set.

Using these weights and the IRLS algorithm, we can conclude that our algorithm should
converge towards critical points of (5.4), as long as the intermediate weighted least-squares
problems are solved accurately (which is not so easy in pratice) and that condition 4 is met.

5.3.3 The Algorithm

The algorithm is given at algorithm 2. The stopping criterion comes from the fact that, in the
limit when k → ∞, the solution is in principle equal to the solution of the original problem.
Hence, their costs should be close, and we will then stop the algorithm if |f (k+1) − f (k)| is
below some threshold.

The initial point can be any low-rank matrix. In practice, using the sparse rank-r SVD of
PΩ(M) often gives a good starting point.

1The function used here is slightly different from the one in (Aftab & Hartley, 2015) but makes more sense
in the limit δ → 0.

5.4. ALTERNATING LINEAR MATRIX COMPLETION 39

Algorithm 2 Iterated Reweighted Least-Squares
procedure IRLS(X(0), δ, ε)

f (0) = 1
Ω
∑

(i,j)∈Ω

√
δ2 + (Xij −Mij)2

k ← 0
e←∞
while e > ε do

w
(k+1)
ij ← 1

2
√
δ2+|Mij−X

(k)
ij |

X(k+1) ← argminX∈Mr

∑
(i,j)∈Ωw

(k+1)
ij (Mij −Xij)2

f (k+1) = 1
Ω
∑

(i,j)∈Ω

√
δ2 + (X(k+1)

ij −Mij)2

e← |f (k+1) − f (k)|
k ← k + 1

end while
return X(k)

end procedure

5.4 Alternating Linear Matrix Completion

Now let us look at the problem from another angle. As already discussed, the problem can
be stated as

min
U∈Rm×r,V∈Rr×n

∑
(i,j)∈Ω

|Mij − (UV)ij |.

The algorithm we will present and analyse in this section is an heuristic method where we fix
one factor, optimize with respect to the other and then repeat this procedure for each factor
consecutively. This procedure should hopefully converge towards a local minimum of the cost
function.

To begin with, let us suppose V is fixed. In this case, U can be found by solving the following
linear program:

min
U

∑
(i,j)∈Ω

|Mij −
∑
k

UikVkj |

which can be decomposed by the lines of U : for each line i∗, we solve (using Matlab’s
notation where “:” denotes the extraction of the corresponding component)

min
Ui∗,:

∑
(i,j)∈Ω:i=i∗

|Mi∗j −
∑
k

Ui∗kVkj |

to recover the i∗th line of U .

In a similar way, should U be fixed, we can recover V by solving

min
V

∑
(i,j)∈Ω

|Mij −
∑
k

UikVkj |.

To recover each column j∗ of V , we can solve the following linear program

min
V:,j∗

∑
(i,j)∈Ω:j=j∗

|Mij∗ −
∑
k

UikVkj∗ |.

40 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

The advantages of this procedure are multiple: first, the implementation is very easy; then,
even if this is only an heuristic, this procedure produces in general good results (in the sense
that the original underlying low-rank matrix is effectively recovered); finally, it seems very
robust to outliers, in the sense that the strengh of the outliers does not seem to affect the
convergence of the algorihtm at all. This can be explained easily using the fact that the LP’s
are very robust to outliers.

5.4.1 Solving the LP’s

It is not completely obvious at first glance that this problem, when U or V is fixed, is an LP.
But it is actually the case.

Again, assume V is fixed. By introducing an extra variable t, defined on Ω, we can reformulate
the problem as a linear program. If we define tij ≥ |Mij − (UV)ij |, the problem can be
formulated as

min
U∈Rm×r

‖PΩ(M−U ·V)‖`1

= min
U∈Rm×r

∑
(ij)∈Ω

|Mij − (UV)ij |

= min
U∈Rm×r,tij∀(ij)∈Ω

∑
(ij)∈Ω

tij s.t.
{
tij ≥Mij −

∑r
k=1 UikVkj ,

tij ≥ −Mij +
∑r
k=1 UikVkj ,

=
m∑
i∗=1

min
Ui∗,:

∑
(i,j)∈Ω:i=i∗

ti∗j s.t.
{
ti∗j ≥Mi∗j −

∑r
k=1 Ui∗kVkj ,

ti∗j ≥ −Mi∗j +
∑r
k=1 Ui∗kVkj .

One advantage is that these are m uncoupled LP’s: it can then be solved much more efficiently
than the corresponding full LP, and it can be done in parallel. The exact same procedure can
be done for the case where U is fixed.

Let us now briefly analyze the size of each of the LP’s. For simplicity, assume m = n. When
V is fixed, each row of U is associated to an LP containing

• r variables (for the length of the row of U) ;

• |Ω|m = fr(m+n−r)
m ≈ 2fr (assuming r << m) variables, one for each of the variables of t

that are to be taken into account, where f is the oversampling factor.

So the number of variables associated to each row of U is approximately r+ 2fr = (2f + 1)r.
The number of constraints is twice the number of variables of t that are to be taken into
account, that is 4fr. If f = 4 for instance, the number of variables in each LP is 9r and the
number of constraints is 16r.

5.4.2 The Algorithm

The algorithm named Alternating Linear Matrix Completion (ALMC) is stated on algorithm
3. The stopping criterion is discussed in the next section.

This algorithm appears amazingly simple but still provides good results in practice.

5.4. ALTERNATING LINEAR MATRIX COMPLETION 41

Algorithm 3 Alternating Linear Matrix Completion
procedure ALMC(U(0),V(0), ε)

k ← 0
e←∞
while e > ε do

U(k+1) ← argminU∈Rm×r ‖PΩ(M−U ·V(k))‖`1
V(k+1) ← argminV∈Rr×n ‖PΩ(M−U(k+1) ·V)‖`1
e← ‖PΩ(M−U(k) ·V(k))‖`1 − ‖PΩ(M−U(k+1) ·V(k+1))‖`1
k ← k + 1

end while
return U(k), V(k)

end procedure

5.4.3 Convergence

It is actually quite easy to prove convergence of the algorithm using a result found in (Raza-
viyayn et al., 2013, theorem 3). They proved the following.
Theorem 1 (Convergence of ALMC (Razaviyayn et al., 2013)). If iterates (U(k),V(k)) are
generated by algorithm 3, every limit point is a coordinate-wise minimizer of the function

f : Rm×r × Rr×n : (U,V)→ ‖PΩ(M−UV)‖`1

Proof. 2 Let us define X(r) = (U(dr/2e),V(br/2c)). Hence, r increases by one when we update
either U or V.

We trivially have, ∀r ≥ 0:
f(X(r)) ≥ f(X(r+1)) ≥ · · · ≥ 0.

Note that this gives sense to the stopping criterion of the algorithm3.

Let us extract from {X(r)}r∈N a subsequence converging towards a limit point X∗ = (U∗,V∗):
{X(rj)}j∈N. Let us also focus on the U iterates. For all U ∈ Rm×r, and for all j ∈ N we have

f(U,V(brj/2c)) ≥ min
U∈Rm×r

f(U,V(brj/2c))

= f(U(brj/2c+1),V(brj/2c))
≥ f(X2(brj/2c+1))
≥ f(X(rj+2))
≥ f(X(rj+2))
= f(U(drj+2/2e),V(brj+2/2c)).

By letting j →∞, we have ∀U ∈ Rm×r

f(U,V∗) ≥ f(U∗,V∗).

This is sufficient to conclude that U∗ is a coordinate-wise minimizer of f .
2We emphasize the fact that this proof is nothing more than a rewriting of the proof of (Razaviyayn et al.,

2013, theorem 3) using our algorithm and notations.
3Meaning the algorithm will terminate at some point.

42 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

The exact same proof can be used to note that V∗ is a coordinate-wise minimizer of f .

The problem with this proof is that it does not prove the existence of any limit point of the
algorithm.

To try to ensure this, we can modify the algorithm by keeping the U(k) orthogonal (such that
U(k)>U(k) = Ir) using a thin QR-factorization U(k) = QR and by “putting” the triangular
factor R into V(k).

Intuitively, this heuristic prevents both the U and V factors to grow indefinitely. Indeed,
without it, U can be arbitrarily small. For instance, since ∀M ∈ Rr×r invertible we have
UV = (UM)(M−1V) = ŨṼ, we can then take

M = εI

so that Ũ → 0 and Ṽ → ∞ if ε → 0. Note that this exact procedure cannot happen during
the execution of the algorithm (since we optimize each factor consecutively, hence we cannot
modify U and V at the same time). Still, it gives some insight on why this problem might
happen. This is not a problem per se (since the product of U and V stays the same, and
the objective function keeps decreasing) but it prevents us to prove convergence towards a
coordinate-wise minimum. More details can be found in appendix C.

5.5 Smoothing Techniques

This section is mainly extracted from a paper in preparation: “Robust Low-Rank Matrix
Completion by Riemannian Optimization" by Cambier & Absil.

The idea of this algorithm is to handle the low-rank constraint using the fact that Mr is a
smooth Riemannian manifold, and to handle the non-differentiability of the objective function
by smoothing techniques, relying on the fact that for small δ,

|x| ≈
√
x2 + δ2.

Using these 2 ideas, we will be able to solve

min
X∈Mr

‖PΩ(X−M)‖`1 + λ‖PΩ̄(X)‖`2 (5.5)

where λ is a regularization parameter, useful in applications. In synthetic artificial experi-
ments, it can usually be set to zero.

5.5.1 The Low-Rank Matrices Manifold

Definition

The low-rank matrix manifold

Mr = {X ∈ Rm×n : rank(X) = r},

5.5. SMOOTHING TECHNIQUES 43

where r ≤ min(m,n), is known to be a smooth manifold embedded in Rm×n of dimension
r(m+n−r) (Lee, 2003; Vandereycken et al., 2009). Hence, optimization techniques presented
in (Absil et al., 2008) can be applied to solve smooth optimization problems where constraints
are formulated usingMr.

Storing the Low-Rank Matrix

There are several ways of describing a matrix X ∈ Mr (Absil & Oseledets, 2014). The
natural method would be to store the entire matrix; but it comes with a storage cost of
mn >> r(m+n− r). This is due to the fact that this representation does not take advantage
of the low-rank underlying structure. In this document, we will use the very natural SVD-like
representation

X = UΣV> (5.6)
where U ∈ Rm×r is an orthogonal matrix (U>U = Ir), V ∈ Rn×r is an orthogonal matrix and
Σ ∈ Rr×r is a diagonal full-rank matrix. This formulation requires r(m+n+1) ≈ r(m+n−r)
storage capacity and has the advantage of having two orthogonal matrices.

The Tangent Space

Each vector Ẋ belonging to the tangent space TXMr ofMr at X has a unique representation
(U̇, Σ̇, V̇) such that (Vandereycken, 2013)

Ẋ = UΣ̇V> + U̇V> + UV̇>, (5.7)

U>U̇ = 0 and V>V̇ = 0.
This formulation also requires r(m+ n+ 1) ≈ r(m+ n− r) storage capacity.

Given a vector Z in the ambient space Rm×n, its projection on the tangent space TXMr can
be computed (Vandereycken, 2013) and is given by PTXMr (Z), defined as

PTXMr : Rm×n → TXMr : Z→ PUZPV + P⊥UZPV + PUZP⊥V,

with PU = UU> and P⊥U = I−UU>, PV and P⊥V being defined in the same way.

Using the tangent space representation, a basic identification yields the following representa-
tion for the (orthogonal) projection of an ambient vector Z onto TXMr:

Σ̇ = U>ZV U̇ = (I−UU>)ZV V̇ = (I−VV>)Z>U. (5.8)

Retraction

The algorithm we will describe requires to be able to move along directions on the manifold.
It is now well established (e.g. in Absil et al. 2008) that this can be cheaply achieved using a
retraction instead of the expensive exponential map for instance, while keeping all convergence
guarantees. We decided to use the projective retraction (Absil & Oseledets, 2014): given a
vector Ẋ ∈ TXMr, it finds Y ∈Mr such that

Y = RX(Ẋ) = argminY∈Mr
‖X + Ẋ−Y‖F .

The solution of this minimization problem is known to be the rank-r SVD of X+Ẋ (Eckart–Young
theorem). Assuming X is given as (5.6) and Ẋ as (5.7), it is possible to compute it efficiently
(Vandereycken, 2013; Absil & Oseledets, 2014).

44 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

Vector Transport

Because Mr is embedded in Rm×n, a suitable vector transport (i.e., a mapping from the
tangent space at some point to the tangent space at another point) is simply the projection of
the ambient version of the original vector in the tangent space at the new point (Vandereycken,
2013).

5.5.2 Smoothing Techniques

The Main Idea

As explained earlier, the problem we aim to solve is the following

min
X∈Mr

‖PΩ(X−M)‖`1 + λ‖PΩ̄(X)‖2`2 , (5.9)

with the following interpretation: we ought to find a low-rank matrix X that fits the data M
in the `1 sense on the mask Ω. On the remaining entries in Ω̄, we have a small confidence λ
(typically between 0 and 10−5-10−3, even though this is application-dependent) that the value
should be zero, hence we minimize the `2 error between X and 0 on Ω̄ 4. This is motivated
by previous studies of (Boumal & Absil, 2015) were regularization was especially useful to
deal with real datasets. Note that the reason for the use of the `2 norm in the regularization
term is twofold: first, the `2 norm will allow significant simplifications to be detailed in the
forthcoming sections. Secondly, we can observe outliers on Ω, so the `1 norm makes sense
there; but we obviously cannot observe outliers on Ω̄, so it does not seem necessary to use an
`1 norm there, and an `2 norm should be more suitable.

The obvious main drawback of using (5.9) is that it is non differentiable. To remedy this
problem, we decided to use smoothing techniques in order to make the objective differentiable.
The idea is that, for a small δ > 0, the following function∑

(i,j)∈Ω

√
δ2 + (Xij −Mij)2

is a smooth approximation of
‖PΩ(X −M)‖`1 ,

as depicted on figure 5.2. The idea is thus to solve the following optimization problem

min
X∈Mr

∑
(i,j)∈Ω

√
δ2 + (Xij −Mij)2 + λ

∑
(i,j)∈Ω̄

X2
ij (5.10)

for decreasing values of δ.

To solve a problem in the form
min
x∈M

f(x)

where M is a smooth Riemannian manifold and where f is smooth, there exist now many
different techniques such as Riemannian conjugate gradient or trust-region algorithms (Absil
et al., 2008). We have opted for the conjugate gradient approach, as it appears to be more
precise and efficient when δ becomes small.

4Note that this assumes that the entries in the matrix have a mean equal to zero.

5.5. SMOOTHING TECHNIQUES 45

δ

|x |

√

δ 2 + x
2

Figure 5.2: Illustration of both |x| and
√
δ2 + x2.

The Objective Function and its Gradient

Using a first-order algorithm like conjugate gradient requires the computation of the cost
function and the (Riemannian) gradient.

Taking a look at (5.10), one may think that just evaluating the cost would require O (mn)
operations, since we need to evaluate X over both Ω and Ω̄. Actually, as pointed out in
(Boumal & Absil, 2011) this is not the case, since

‖PΩ̄(X)‖2`2 = ‖X‖2`2 − ‖PΩ(X)‖2`2 ,

and, because we store X using the factorization X = UΣV>, we can compute ‖X‖2`2 easily
thanks to the invariance of the Frobenius norm to orthogonal changes of basis :

‖X‖2`2 = ‖Σ‖2`2 ,

which requires O (r) operations. We can then rewrite the cost function of (5.10) as

fδ(X) =
∑

(i,j)∈Ω

(√
δ2 + (Xij −Mij)2 − λX2

ij

)
+ λ‖X‖2`2 . (5.11)

Hence, computing the cost function requires O (|Ω|+ r) operations, after having evaluated
the product UΣV> on the mask Ω.

We can clearly see here the advantage of having added an `2 regularization term: the fact that
‖X‖2`2 = ‖Σ‖2`2 is crucial to avoid an O (mn) complexity in the computation of the objective
function.

To compute the gradient, because Mr is embedded in Rm×n, we first need to compute the
Euclidian gradient of f at X and then project it onto TXMr. The Euclidian gradient is

∇fδ(X) = S + 2λX

where S is a sparse matrix defined as

Sij =

Xij−Mij√

δ2+(Xij−Mij)2 − 2λXij if (i, j) ∈ Ω,
0 otherwise.

The gradient is then the sum of a sparse component (S) and a low-rank one (2λX). Then, pro-
jecting it onto TXMr can be done efficiently thanks to equation (5.8) and to the factorization

46 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

X = UΣV>. Indeed, we have

Σ̇ = U>(S + 2λX)V
= U>SV + 2λΣ,

U̇ = (I−UU>)(S + 2λX)V
= SV + 2λUΣ−UU>SV− 2λUΣ
= SV−UU>SV,

V̇ = (I−VV>)(S + 2λX)>U
= S>U + 2λVΣ−VV>S>U− 2λVΣ
= S>U−VV>S>U.

Given the fact that S is sparse, these 3 terms can be computed efficiently. Note that the
addition of the regularization parameter is cheap, since it only requires to modify the S
matrix, and to add a small r × r matrix to Σ̇.

The Algorithm

The full algorithm is stated in algorithm 4; the name RMC stands for “Robust Matrix Com-
pletion”. Note that in the following, by outer and inner iteration we mean the δ and the CG
loop, respectively.

We use a conjugate-gradient algorithm with a Hestenes-Stiefel modified rule (even though,
after several experiments, we found that this choice does not really impact the algorithm) and
an Armijo backtracking linesearch.

The starting point of the algorithm, X(0), can be chosen simply using the rank-r SVD
of PΩ(M). Suitable values for δ(0) (the initial value for the smoothing parameter δ) are
application-dependent, but for data M with values around unity, we use δ(0) = 1. Note that
this value can have a significant impact on the solution final quality. The smoothing param-
eter is then updated using a geometric rule δ(k+1) = θ · δ(k). A quite “aggressive” value of
θ = 0.05 gives good results in our synthetic experiments. In real applications this parameter
has to be tuned to find the right value. For all experiments, ε is set to 10−8 (but again, this
is application-dependent). The stopping criterion of the conjugate-gradient algorithm is set
to a maximum of 40 iterations or a gradient norm of 10−8, whichever is reached first.

5.5.3 Convergence Analysis

This section provides a basic convergence analysis of the RMC algorithm. Its goal is mostly
to give sense to the stopping criterion of the outer loop, i.e., that the algorithm will terminate
at some point (assuming exact arithmetic at least).
Theorem 2 (Strict decrease). If the sequence of iterates {X(0),X(1),X(2), . . . } is produced
by algorithm 4 with θ < 1, defining f (k) = fδ(k)(X(k)), we have

f (0) > f (1) > · · · > f (k) > · · ·

Proof. At iteration k, the CG algorithm returns a feasible solution X(k) ∈ Mr, associated
with δ(k). It is easy to see that X(k) stays a feasible point for the next step (since it belongs

5.6. NUMERICAL RESULTS AND COMPARISON OF THE ALGORITHMS 47

Algorithm 4 RMC
procedure RMC(X(0), δ(0), θ, ε, λ)

f (0) ←∞
k ← 0
δ(1) ← δ(0)

e←∞
while e ≥ ε do

Solve

X(k+1) = argminX∈Mr

∑
(i,j)∈Ω

√
(δ(k+1))2 + (Xij −Mij)2 + λ‖PΩ̄(X)‖2`2 (5.12)

using Riemannian Conjugate Gradient algorithm and X(k) as a starting point.
f (k+1) ← fδ(k+1)(X(k+1))
e← f (k) − f (k+1)

k ← k + 1
δ(k+1) ← δ(k) · θ

end while
end procedure

toMr), and that
fδ(k)(X(k)) > fδ(k+1)(X(k)).

This follows from δ(k+1) = θ · δ(k) < δ(k) and the expression (5.11) of fδ(X). Then, because
CG is a descent direction,

fδ(k+1)(X(k)) ≥ fδ(k+1)(X(k+1)).

The claim follows from these two inequalities.

Now, it is also easy to notice that, ∀δ ≥ 0 and ∀X ∈Mr,

fδ(X) ≥ f(X).

Hence, defining
f∗ = inf

X∈Mr

f(X) ≥ 0,

we observe that the sequence of iterates {fk}Kk=1 is monotonically decreasing and bounded
below by f∗.

This conclusion gives sense to the stopping criterion of the algorithm saying that it stops
after iteration k if the difference between f (k) and f (k+1) is below some threshold ε: the
algorithm will terminate at some point. We emphasize the fact that this does not prove that
the algorithm converges towards a global minimum.

5.6 Numerical Results and Comparison of the Algorithms

In this section, we compare our three algorithms in term of convergence speed, solution quality
and robustness.

48 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

5.6.1 Synthetic Experiments

On all experiments, synthetic artificial data are created in the following way: we build U ∈
Rm×r and V ∈ Rr×n with i.i.d. Gaussian-entries such that their product M = UV is
filled with zero-mean and unit-variance non independent Gaussian entries. We then sample
k = fr(m+ n− r) entries uniformly at random, where f is the oversampling factor.

In some cases, we will add some non-Gaussian noise on part the observed entries to create
outliers. To do so, we add one realization of the following random variable

O = S±1 · N (µ, σ2)

where S±1 is a random variable with equal probability to be equal to +1 or −1, while N(µ, σ2)
is a Gaussian random variable of mean µ and variance σ2. Unless stated otherwise, outliers
are created uniformly at random with some probability, usually 5%.

Different factors affect the task of matrix completion. Obviously, the size of the problem
matters, and we will try to tackle large enough problems to show that our algorithm scales
well. The oversampling factor f should also be greater than 1, and in the following experiments
it will be fixed to either 4 or 5.

Let us denote by M0 the original low-rank matrix, without any outliers. We will monitor how
the root mean square error (RMSE), defined as the error on all the entries between X and
the original matrix M0

RMSE(X,M0) =

√∑m,n
i=1,j=1(Xij −M0,ij)2

mn

decreases. Since we have access to the factorization of both X and M0, this can be computed
efficiently (see section 3.5 and Boumal & Absil, 2015). A decrease towards zero is what we
expect from a robust matrix completion method, since our goal is to recover exactly (up to
numerical errors) the original low-rank matrix, even in the presence of outliers.

We decided to compare our three algorithms (denoted by IRLS, ALMC and RMC) to both
AOPMC (Yan et al., 2013) and GRASTA (He et al., 2011). We were unfortunately unable
to find an efficient implementation of the algorithm described in (Nie et al., 2012b), the
implementation available requiring SVD of full m× n matrices.

For RMC, the maximum number of CG iterations (the inner loop) is set to 40 with a gradient
tolerance of 10−8. We use δ0 = 1, as well as θ = 0.05.

For IRLS, the maximum number of iterations for each least-square problem, solved using
RTRMC, is set to a quite “aggressive” value of only 5 (with an exception at the first iteration
where this parameter is set to 20, to allows good convergence in problems without outliers),
while the maximum number of iteration of the “outer loop” is set to 50. We use a value of
δ = 10−5, which seems like a good compromise between precision and stability. Gradient
tolerance is set to 10−8 throughout the execution of the algorithm, and we use ε = 10−8. We
tried using the conjugate gradient method, but it seems to be slower and even less robust
than trust-region. Note that, as we will see in the following, the parameters of IRLS are quite
hard to determine accurately. In some experiments, these parameters work well, but on some
other they do not.

ALMC uses the “orthogonalization” option, even though this does not seems necessary in
these experiments. Yet, because the time spent in the ortogonalization is almost negligible,

5.6. NUMERICAL RESULTS AND COMPARISON OF THE ALGORITHMS 49

we decided to use it anyway. The algorithm stops if the difference between two successive
iterations is below 10−8.

For AOPMC, we use the default settings with a maximum of 20 trust-region iterations at each
outer iteration (i.e., when the mask Ω is fixed, with potentially some outliers removed) but
a maximum of 20 iterations for the tCG algorithm (see (Boumal & Absil, 2011) for further
information). Note that we use the code of the authors5, but because we know the number of
outliers, we decided to provide it to AOPMC. Otherwise, we would need to run the algorithm
several times to guess the number of outliers. Also note that AOPMC automatically adjusts
the number of iterations if it seems that the convergence is too bad. We did not change this
option, so this may explain why the algorithm sometimes does more than 20 iteration between
each update of the mask Ω.

Regarding GRASTA, we also use the implementation provided by the authors6, with the
default settings, but we had some troubles to run the algorithm on large 50 000 × 50 000
problems, since it was not even able to perform two complete sweeps over the data in less
than 10 minutes (while RMC terminates in about 5 minutes in this situation). It seems to
be due to the fact that the algorithm operates one column at a time, and since each rank-1
update of the U matrix takes about 0.01-0.02 second (using a standard but efficient Matlab
implementation), one loop over the 50 000 columns takes more than 10 minutes. Note that
this can be easily understood, since the original goal of GRASTA is not to perform “batch”
matrix completion, but rather online subspace tracking. For the 500 × 500 case, everything
goes well and the algorithm converges in an amount of time comparable to RMC. The only
modification made to the algorithm was to change the initial point that was set, like the
other algorithms, to the left matrix of the rank-r SVD of the matrix PΩ(M) (instead of
some complete random initialization). But it does not have a significant influence on the
convergence of the algorithm.

On all figures, the large dots indicate a change in the outer-iteration: in RMC it indicates a
decrease in δ, in IRLS it indicates an update of the weights while it indicates an update of
the mask Ω in AOPMC.

Note that we tried, without success, to speed-up the RMC and AOPMC algorithms by termi-
nating the inner loop sooner, when the decrease from iteration to iteration was small enough.
Yet, it appears that solving the inner problems with a good enough quality (i.e., a small
enough gradient norm) is crucial for the convergence of both algorithms towards the exact
underlying low-rank matrix. For this reason, we left the gradient tolerance set to 10−8.

Note that the experiments where run on quite large 50 000×50 000 matrices, in order to show
that RMC scales well on large matrices. Some experiments were also run on 500 000×500 000
matrices of rank 10: the behavior of RMC was very stable and the running time appeared to
be linear in the size of the matrix, i.e., in O(m+n). They are omitted for simplicity. Results
on smaller matrices are qualitatively the same, except of course for the time the algorithm
takes to reach the optimal value. Regarding IRLS and ALMC, things were more complicated,
since they are already quite slow and/or unstable on 50 000×50 000 matrices. We did not try
these methods on 500 000× 500 000 problems.

All experiments where run on a 6 core Intel Xeon CPU E5-1650 v2 at 3.50GHz with 64 Go
of ram using Matlab R2014a on a 64 bit Linux machine. We used the Manopt toolbox
(Boumal et al., 2014) (version 1.0.7) to handle the optimization part of the RMC algorithm

5Available at https://binary-matching-pursuit.googlecode.com/files/AOPMCv1.zip.
6Available at https://sites.google.com/site/hejunzz/grasta.

https://binary-matching-pursuit.googlecode.com/files/AOPMCv1.zip
https://sites.google.com/site/hejunzz/grasta

50 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

0 10 20 30 40 50 60 70 80 90 100

10
−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
M

S
E

IRLS

RMC

AOPMC

Figure 5.3: Perfect low-rank matrix completion: low-rank matrix completion of a rank-10
50 000 × 50 000 matrix observed with an oversampling of 4. The decrease in the objective
function of RMC from iteration to iteration is clear. In this example, it struggles to signifi-
cantly decrease the RMSE at the end since the function becomes less and less differentiable
near the “kinks” of the absolute values, where the solution takes place. AOPMC and IRLS
do not have this problem, and converges well towards 0.

with the fixedrankembeddedfactory manifold factory and the default conjugate gradient
method. IRLS uses RTRMC (version 3.1) and the same version of Manopt ; ALMC uses
Gurobi (www.gurobi.com) 5.6.3 to solve the LP’s.

Perfect Low-Rank Matrix Completion As a sanity check, we test our algorithm on
the very simple perfect matrix completion (matrix completion without any noise nor outliers)
problem using a 50 000× 50 000 matrix of rank 10. Results are depicted on figure 5.3. Excep-
tion made of ALMC and GRASTA, all algorithms successfully recover the underlying low-rank
matrix. Note that the convergence of IRLS and AOPMC are almost the same since in their
first iteration they both use RTRMC with a uniform weight matrix C. ALMC does not even
make one iteration. This is the main drawback of this algorithm: it is significantly slower
than the other. As explained in section 5.4.1, we need to solve, at each iteration, thousands
of LP’s with, roughly (2f + 1)r ≈ 100 variables and 4fr = 160 constraints. Even though this
may seem easy because they all quite small, a careful analyze of the algorithm shows that
most of the time is consumed inside the gurobi function at solving the LP’s. GRASTA is
too slow as well, and does not make one sweep over the data before 10 minutes. As explained
earlier, this is due to the time each rank one update takes.

Low-Rank Matrix Completion with Outliers Given a 500 × 500 matrix for which we
observe the entries uniformly at random with an oversampling of 4, we perturbed 5% of the
observed entries by adding to them some non-Gaussian noise to create outliers. This problem
would be cumbersome to solve with an `2 method because of the high weights the outliers
would have in the objective function.

www.gurobi.com

5.6. NUMERICAL RESULTS AND COMPARISON OF THE ALGORITHMS 51

When running our algorithms, we obtain the results depicted on figure 5.4(a) for outliers
created using µ = σ = 0.1 and on figure 5.4(b) using µ = σ = 1.

All the algorithms successfully solve the first problem, but we can see that GRASTA starts to
have difficulties solving the second one. We suspect that this is due to the fact that GRASTA
still uses an `2 norm in the algorithm (because of the augmented Lagrangian method), so the
strength of the outliers still have some impact on the convergence. AOPMC seems to handle
better the outliers, perhaps because the adaptive mask allows it to completely remove their
impact from the objective function at the end. IRLS solves both problems well, but we can see
that it seems more sensitive to the outliers strengh than AOPMC and RMC. It is interesting
to note that ALMC does not seem to be slowed down by the fact that outliers are stronger in
the second experiment. The convergence curve is almost indistinguishable from the first one.
We believe this is due to the fact that solving the LP’s is very stable numerically and is not
affected at all by the outlier’s strenght.

We then run the same experiment on larger 50 000×50 000 matrices, with still 5% of outliers.
Figure 5.5(a) and 5.5(b) illustrate the results of these experiments, with µ = σ = 1 and
µ = σ = 5 respectively, using an oversampling of 5.

We can see that both AOPMC and RMC solve the first problem well. GRASTA, on the other
hand, does not converge in a decent amount of time. We also observe that RMC stays very
robust when the strength of the outliers increases, while AOPMC starts to have important
difficulties in the second experiment. The robustness of RMC may be due to the asymptotic
linear behavior of the cost function, even in the first iterations. IRLS seems quite “unstable”,
in a sense that the matrix, his size, etc. seem to have some influence on his convergence. As
expected, ALMC is too slow and has no chance of solving this problem in a decent amount
of time compared to the other methods.

Note that this is a quite extreme experiment, in a sense that the outliers have a mean (abso-
lute) amplitude of 5, while the entries have mean (absolute) value of 1. Yet, it demonstrates
the robustness of RMC. Also note that the oversampling has a significant importance in this
experiment, as an oversampling of 4 seems to make things harder for RMC: in this case, the
RMSE stagnates around 10−4 − 10−5.

In the following experiments, we present some results using RMC only, since it clearly appears
to be the best method among the one we compared.

Noisy Low-Rank Matrix Completion with Outliers In this experiment, we try to
tackle the important problem of matrix completion in the presence of both (dense) noise
and (sparse) outliers. Outliers are defined as previously, while noise is the addition, at each
observed entry, of a zero-mean Gaussian random variable with variance σ2

N .

To have a point of comparison, we compare the results using RMC to the performances an
oracle knowing the row and column space of M0, and returning the best matrix using this
information, would give. If the entries are perturbed by Gaussian noise (without outliers)
with variance σ2

N , the best RMSE is equal (in expectation) to (Candes & Plan, 2010)

RMSEOracle = σN

√
2nr − r2

|Ω|

for the low-rank completion of an n× n matrix with an `2 method.

52 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

0 5 10 15 20 25 30 35
10

−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
M

S
E

IRLS

RMC

ALMC

AOPMC

GRASTA

(a) µ = σ = 0.1

0 5 10 15 20 25 30 35

10
−6

10
−4

10
−2

10
0

Time [s]

R
M

S
E

IRLS

RMC

ALMC

AOPMC

GRASTA

(b) µ = σ = 1

Figure 5.4: Low-rank matrix completion with outliers: robust low-rank matrix completion of
rank-10 500 × 500 matrices observed with an oversampling of 4 and with 5% outliers in the
observed entries.

5.6. NUMERICAL RESULTS AND COMPARISON OF THE ALGORITHMS 53

0 100 200 300 400 500 600

10
−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
M

S
E

IRLS

RMC

AOPMC

(a) µ = σ = 1

0 100 200 300 400 500 600

10
−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
M

S
E

IRLS

RMC

AOPMC

(b) µ = σ = 5

Figure 5.5: Low-rank matrix completion with outliers: robust low-rank matrix completion on
50 000× 50 000 matrices of rank 10 with an oversampling of 5 and 5% outliers in the observed
entries.

54 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

10
0

10
5

10
10

10
15

10
−10

10
−5

10
0

R
M

S
E

SNR = 1/σ
2

N

RMC

Oracle

Figure 5.6: Noisy low-rank matrix completion with outliers: Evolution of the RMSE with
respect to the signal-to-noise ratio SNR = 1

σ2
N

on a 5 000 × 5 000 matrix of rank 10 with an
oversampling of 5 and 5% outliers created using µ = 1 and σ = 1. Noise is the addition of
i.i.d. Gaussian variables N (0, σ2

N).

Figure 5.6 depicts the RMSE at termination of RMC with respect to the signal-to-noise (SNR)
ratio. Results are the average of 3 successive experiments. Entries in the matrix M are such
that the matrix has unit-variance Gaussian entries. We thus have SNR = 1

σ2
N
.

We clearly see that—even in the presence of 5% of outliers—the algorithm successfully recovers
the original low-rank matrix with an error proportional to the noise level. As long are the
noise level is not too high, we have performances very similar to those of the oracle bound.
For a high level of noise (SNR < 1), we see that the algorithm is slightly better than the oracle
bound. This can be due to the `1 objective function which helps reduce the effect of the high
variance. For a low level of noise, with a SNR greater than 1014, the algorithm begins to have
numerical difficulties to drive the RMSE towards zero because the objective function becomes
less and less differentiable near the “kinks” of the absolute values. This is the same effect
as in the previous experiments where the RMSE begins to stagnate around 10−8 − 10−6 due
to the non-differentiability of the objective function near the solution, which happens to be
exactly at the non-differentiable part of the objective function. A moderate and high level of
noise has the effect of “smoothing” the objective function since the solution starts to deviate
from the kinks of the `1 norm.

Evolution with the Number of Outliers It is now interesting to ask the following: is
all of this true for all percentages of outliers ? Does our algorithm recover the original matrix
for all levels of outliers ? Of course this is not the case but figure 5.7 shows how the RMSE
at termination evolves when either the percentage of outliers added or the outliers strength
increases. This figure is obtained after the average (at each point on the plot) of 3 experiments,
aiming at the completion of a 5 000× 5 000 rank-10 matrix observed with an oversampling of
4 (note the triple-log scale).

Three things are worth noting on this figure. First, the abrupt change in the RMSE around

5.6. NUMERICAL RESULTS AND COMPARISON OF THE ALGORITHMS 55

10
1

10
0

10
1

10
1

10
0

10
1

10
6

10
4

10
2

10
0

µ = σ% outliers

R
M

S
E

Figure 5.7: Evolution with the Number of Outliers: evolution of the RMSE with respect to
the percentage of outliers and their strength on a 5 000 × 5 000 matrix of rank 10, observed
with an oversampling of 4 and using µ = σ.

56 CHAPTER 5. ROBUST LOW-RANK MATRIX COMPLETION

0.5% of outliers is purely numeric. The reason is that the slight increase of the percent of
outliers allows the method to converge better: the algorithm succeeds in decreasing δ(k) one
more time (without the conjugate gradient stalling) and can then decrease the RMSE even
more.

Secondly, we notice a strong increase in the RMSE around 6-8% of outliers. This is quite
low but can be explained by the small oversampling ratio used: a low percentage of outliers
can reduce the number of healthy entries below the minimum required number. Still, this is
interesting, as it shows that as long as the number of outliers is small enough, the recovered
matrix stays almost exactly the same as the original unperturbed matrix.

Thirdly, it is interesting to note that the strength of the outliers, from µ = σ = 0.1 to
µ = σ ≈ 10, has a negligible impact on the quality of the final solution (remember entries
have values around unity) as long as it remains low enough. This is in complete opposition with
the previous experiment on noisy matrix completion, where the RMSE is clearly proportional
to the level of the dense Gaussian noise

5.6.2 Conclusions

From these experiments, it seems clear that the method that combines both robustness (to
strong outliers) and speed is RMC. By combining elementary smoothing techniques and Rie-
mannian optimization, we built a method that can handle large-scale robust matrix completion
tasks, even in the presence of both noise and outliers, which has a significant importance in
practice.

ALMC gives quite good solutions and seems very robust to the outliers strength. But it has
the major drawback of being extremely slow. In our opinion, this is simply due to the fact
that it still need to solve many small LP’s. Even though this is much easier than one large
LP, it is still not efficient enough to compete with RMC for instance.

IRLS sometimes converges well but seems quite unstable. We did our best to find good
parameters but it does not seem very robust (for instance, to the changes in the problem
size, the strength of the outliers, etc.). In particular, the maximum number of iterations of
the trust region algorithm is a critical parameter that is not that easy to tune. It should be
high enough so that the trust-region algorithm can start to decrease the cost, but not too
high, since in this case the algorithm can easily spend a lot of time in one iteration without
updating the weights.

When comparing our algorithms to AOPMC and GRASTA, we found that AOPMC was
often a quite good competitor, even though it clearly seems less robust to the strength of
the outliers. GRASTA gives good results on small problems, with small outliers, but when
the problem size increases, it clearly becomes too slow to compete with RMC or AOPMC on
batch matrix completion problems.

In conclusion, our best method so far clearly is RMC. For this reason, this is the method we
will use in the next chapter when we tackle low-rank matrix completion on real datasets.

6 | Applications

6.1 Recommender Systems

One of the most emblematic uses of Low-Rank Matrix Completion is in recommender systems
and in particular in the Netflix Prize (Bennett & Lanning, 2007). In this section, we propose
to test our algorithm RMC on this real-world dataset.

The problem is the following: Netflix, a movie rental company, wants to recommend movies
to its users. To do so, they have a limited database of known ratings provided by some users
themselves. In practice, this translates into the completion of a large 480 189×17 770 matrix,
where columns correspond to movies, rows to user, and each entry is the rating of the movie
represented by an integer from 1 to 5. To train the algorithm, we have 99 072 112 entries
revealed; that is, approximately 1% of the entries are known. We then test our model on
another set of 1 408 395 entries. Note that all values are shifted towards zero by subtracting
the mean of the revealed entries (3.604), since our (regularized) model assumes a mean value
of 0.

To assess the results, we use the root mean square criterion, i.e.,

RMSEtest =

√∑
(i,j)∈TestSet(Xij −Mij)2

|TestSet| ,

on the test set (i.e., the unrevealed entries). Returning the mean ratings as a prediction leads
to a test RMSE of 1.13, while the winner of the Netflix prize, the BellKor’s Pragmatic Chaos
algorithm (Netflix, 2009), reached an RMSE of 0.8567, using a combination of many different
techniques. Boumal & Absil (2015) performed extensive comparisons between different low-
rank matrix completion algorithms (all minimizing the `2 norm on the training set). We can
observe that the best result was obtained using LMaFit (Balzano et al., 2010), reaching a test
RMSE of 0.955.

Two parameters have a significant influence on the results. The rank “dictates” the complexity
of the solution; the regularization parameter λ is used to limit overfitting, i.e., to avoid fitting
too well the known entries while deviating too much from the mean on the unknown entries. To
study the impact of both parameters, we picked a reference point with r = 10 and λ = 8 ·10−4

and we then changed the two parameters around these two values, one at the time. Note that
the rank was chosen arbitrarily, while the value of λ is the one that gives the best results
for a rank of 10. Also note that, after a few trials, we found that in this context, iteratively
decreasing the δ parameter was not particularly useful. We then decided to fix it to 1. This
value might seems high, but the smooth version is already a quite good approximation of the
`1 norm. The number of iterations was limited to 100, and the gradient tolerance was set

57

58 CHAPTER 6. APPLICATIONS

0 5 10 15 20 25 30
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Time [min]

T
e

s
t

R
M

S
E

0

10
−6

10
−4

4 10
−4

8 10
−4

10
−3

10
−2

0.9477

Figure 6.1: Evolution of the test RMSE on the Netflix dataset for different values of λ
(displayed on the right) using a rank r = 10. It is clear from this experiment that the
regularization λ play an important role. By tuning it to the right value, we obtain a quite
good test RMSE of 0.9477

to 10−8. In practice, most of the runs did not reach a gradient tolerance of 10−8 and were
interrupted after 100 iterations.

Figure 6.1 depicts the evolution of the test RMSE for different values of λ. We can easily see
that the non-regularized algorithm reaches a reasonable test RMSE but then tends to overfit.
Increasing the regularization parameter λ around 10−3-10−4 allows to find a good compromise
between training error and overfitting. By increasing it even more, the test RMSE eventually
stagnates, i.e., the regularization is so strong that it does not really fit anything except the
mean value (see the λ = 10−2 curve for instance).

Figure 6.2 illustrates how the rank plays a significant role in the solution quality. From this
plot, it seems that the choice r = 10 was the right one, since other values for r give higher
results. As underlined in (Boumal & Absil, 2015), choosing a high rank from the beginning
does not seem to be the best choice and rank increasing methods may be worth investigating.

We can conclude from these experiments that our algorithm performs well on the Netflix
dataset since it slightly outperforms the low-rank matrix completion algorithms that use the
`2 norm. This may be due to the fact that our method is robust to outliers: this can help to
reduce overfitting (even with no regularization), hence leading to a better overall model that
better fits the test set.

Still, it is known that to reach better test RMSE, it is useful to combine this idea of low-rank
matrix completion with other techniques. For instance, temporal effects have a large impact,
as explained in (Bennett & Lanning, 2007): movies become more or less popular over time,
user tastes and ratings can change over time, and so on. Neighborhood models, where users
and movies are aggregated into groups of similar profiles, also help in decreasing the test
RMSE (Bennett & Lanning, 2007). Yet, our algorithm proved itself to be quite efficient and

6.2. ROBUST STRUCTURED IMAGE INPAINTING 59

0 10 20 30 40 50 60
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Time [min]

T
e

s
t

R
M

S
E

1

2

5
10

15

20

0.9477

Figure 6.2: Evolution of the test RMSE on the Netflix dataset for different values of the
rank r using λ = 8 ·10−4. It seems that the choice r = 10 is the right one, and that increasing
the rank leads to overfitting.

may certainly be used as a good building block for a more complex algorithm. It should also
be possible to better fine tune each parameter of the algorithm to find an even better optimal
configuration.

6.2 Robust Structured Image Inpainting

We here try to tackle the problem of robust image inpainting. This problem is the following:
given an image, with a lot of pixels missing, can we recover the original picture ? In general,
the answer would be no: we at least need some hypothesis on the underlying original picture
to recover it.

In this section, we assume that the underlying picture is low-rank, or has at least an underlying
low-rank structure. Of course, this does not always make sense in applications, since a lot of
pictures are not low-rank. Still, it makes sense if the picture presents some structure with
repeating rectangular patterns for instance.

The 827×1000 picture to be used in this section (fig. 6.3(a)) depicts a crowded Asian building,
where the image suits well the low-rank property: the repetition of the windows pattern makes
the building low-rank. But this low-rank structure is clearly perturbed by a lot of details like
towels and clothes hanging from the windows, A/C units, etc.

Because of that, this picture is actually “low-rank plus sparse”, in the sense that the building
is the low-rank component while the multiple details create a sparse perturbation. In this
context, a robust low-rank matrix completion algorithm should be able to recover the low-rank
background, i.e., the building. Note that we also added, by hand, around 35 large white and

60 CHAPTER 6. APPLICATIONS

black dots to make the low-rank matrix completion tasks a little bit harder.

(a) Original picture, perturbed by hand with 35 large
white and black dots.

(b) Perturbed picture, with 45% observed pixels, in-
cluding 10% of strong outliers.

(c) Recovered rank-30 picture using RMC (d) Recovered rank-30 picture using the `2 algorithm
RTRMC (λ = 5 ·10−2, with data shifted by substrat-
ing the mean of 107)

Figure 6.3: Robust image inpainting of a low-rank plus sparse picture, where the background
building is low-rank and the multiple details create a “sparse” perturbation component.

Figure 6.3(b) illustrates the same picture with around 55% of unknown pixels (in black on
the image), as well as 10% of outliers (created using µ = 75 and σ = 50 — remember the
entries of the image have values from 0 to 255).

After running the RMC algorithm (with θ = 0.1, δ(0) = 1, ε = 10−6 and a maximum of 40
CG iterations for each value of δ), we obtain the result depicted in figure 6.3(c), using a rank
of 30 and no regularization (λ = 0). In this case, it is clear that a low-rank matrix completion
algorithm successfully extracts the underlying low-rank structure of the image, leaving aside
all small local perturbations as well as (most) large white and black dots. The few remaining
ones appear in area where there are not enough data available to properly reconstruct the
image.

Figure 6.3(d) on the other hand presents the result of the RTRMC algorithm on the same

6.2. ROBUST STRUCTURED IMAGE INPAINTING 61

(a) Zoom on the original picture (with artificial black
and white dots).

(b) Zoom on the recovered picture using RMC

Figure 6.4: Two thumbnails of the original and recovered image, clearly showing that RMC
successfully recovers the low-rank component, leaving aside all sparse details.

picture, with a rank of 30. We did our best to find the optimal value of λ, and a value around
λ = 5 · 10−2 seems to give the best result. Note that the data were shifted towards zero first.

This experiment tends to show that an `1 method seems more robust in this particular problem
where the goal really is to extract the low-rank “background” from the image, for which the `1
norm minimization is a natural model. This is particularly clear when comparing figure 6.4(a)
and figure 6.4(b), two thumbnails of respectively the original and the recovered image. The `2
norm model, on the other hand, seems to really fit all the details of the image including both
the low-rank component as well as the sparse details. This leads to a quite bad reconstruction
with a lot of noise.

62 CHAPTER 6. APPLICATIONS

Conclusions

In this thesis, we tackled the problem of low-rank matrix completion.

After having stated the problem, as well as having introduced the tools of Riemannian opti-
mization, we successively studied two quite different problems.

In the first part, the goal was to improve the existing RCGMC algorithm. In chapter 3, we
introduced a special type of conjugate gradient algorithm. This method, as opposed to other
conjugate gradient algorithms, is known to have global convergence properties. In addition,
experiments show that this new method is quite efficient, at least on well conditioned problems.
In this situation, it can significantly speed up the existing algorithm.

We then developed, in chapter 4, a parallel version of RCGMC. This task required us to, first,
precisely understand what needs to be computed and how to do it efficiently. For instance,
we had to be careful to store the results correctly in the computer in order to allow for
efficient computations. The second task was to properly implement the different parts of the
algorithm. To be able to precisely parallelize the most expensive operations, the idea was to
perform everything using compiled C-mex files. Doing so, we reached, using 6 cores and very
large matrices, a quite good speedup of almost 5. In future work, one could attempt to build
a parallel version of RTRMC. This would require parallelization of the Hessian.

The second part of this thesis was dedicated to the significant problem of robust low-rank
matrix completion. This is an important problem since real datasets often contain outliers.
To tackle this problem, we developed three different methods that we compared to two ex-
isting algorithms. These experiments showed that one of our algorithm that combines both
Riemannian optimization and smoothing techniques appears to be an excellent competitor of
existing algorithm: it both scales well when the size of the matrix increases and can easily
solve the low-rank matrix completion problem in the presence of both dense additive noise
and strong sparse outliers.

The part on smoothing techniques seems to be quite promising for the future: this work is
one of the first in the area of non-smooth Riemannian optimization. Indeed, our method
really is a non-smooth optimization method on manifold. Different research directions can be
investigated. One could try to find better smoothing techniques; it could also be interesting to
investigate the decrease of δ: is it possible to find a way such that, for instance, the X(k) stays
in the quadratic convergence area, so that an algorithm like trust-regions or the Newton’s
method would converge faster ? It could also be interesting to apply this method to other
manifolds, to see if the good convergence results are conserved.

Finally, we used our best algorithm, RMC, on two real datasets. On the Netflix dataset,
our method appeared to be slightly better than other low-rank matrix completion algorithms.
We then used RMC to successfully recover badly damaged images. Using a suitable “low-

63

64 CONCLUSIONS

rank plus sparse” image representing a background building with a lot of sparse details, we
recovered well the low-rank part of the image, i.e., the building.

In conclusion, low-rank matrix completion is a challenging task. But there exist nowadays
suitable, fast and robust algorithms to solve this problem.

The codes used to create all the figures of this thesis can be downloaded from http://
baemerick.be/lcambier.

http://baemerick.be/lcambier
http://baemerick.be/lcambier

Bibliography

Absil, P-A, & Oseledets, Ivan V. 2014. Low-rank retractions: a survey and new results.
Computational Optimization and Applications, 1–25.

Absil, P-A, Mahony, Robert, & Sepulchre, Rodolphe. 2008. Optimization algorithms on matrix
manifolds. Princeton University Press.

Aftab, Khurrum, & Hartley, Richard. 2015. Convergence of Iteratively Re-weighted Least
Squares to Robust M-estimators.

Balzano, Laura, Nowak, Robert, & Recht, Benjamin. 2010. Online identification and track-
ing of subspaces from highly incomplete information. Pages 704–711 of: Communication,
Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on. IEEE.

Bennett, James, & Lanning, Stan. 2007. The netflix prize. Page 35 of: Proceedings of KDD
cup and workshop, vol. 2007.

Boumal, Nicolas, & Absil, P.-A. 2015. Low-rank matrix completion via preconditioned opti-
mization on the Grassmann manifold. Linear Algebra and its Applications, 475(0), 200 –
239.

Boumal, Nicolas, & Absil, Pierre-antoine. 2011. RTRMC: A Riemannian trust-region method
for low-rank matrix completion. Pages 406–414 of: Advances in neural information pro-
cessing systems.

Boumal, Nicolas, Mishra, Bamdev, Absil, P.-A., & Sepulchre, Rodolphe. 2014. Manopt, a
Matlab Toolbox for Optimization on Manifolds. Journal of Machine Learning Research,
15, 1455–1459.

Burke, James V. 2014. Class notes for MATH 408, Linesearch Methods.

Candes, Emmanuel J, & Plan, Yaniv. 2010. Matrix completion with noise. Proceedings of the
IEEE, 98(6), 925–936.

Candès, Emmanuel J, & Recht, Benjamin. 2009. Exact matrix completion via convex opti-
mization. Foundations of Computational mathematics, 9(6), 717–772.

Candès, Emmanuel J, Li, Xiaodong, Ma, Yi, & Wright, John. 2011. Robust principal compo-
nent analysis? Journal of the ACM (JACM), 58(3), 11.

Chen, Yudong, Xu, Huan, Caramanis, Constantine, & Sanghavi, Sujay. 2011. Robust matrix
completion with corrupted columns. arXiv preprint arXiv:1102.2254.

Chen, Yudong, Jalali, Ali, Sanghavi, Sujay, & Caramanis, Constantine. 2013. Low-rank

65

66 BIBLIOGRAPHY

matrix recovery from errors and erasures. Information Theory, IEEE Transactions on,
59(7), 4324–4337.

Chistov, Alexander L, & Grigor’ev, D Yu. 1984. Complexity of quantifier elimination in
the theory of algebraically closed fields. Pages 17–31 of: Mathematical Foundations of
Computer Science 1984. Springer.

Dai, Yu-Hong, & Yuan, Yaxiang. 1999. A nonlinear conjugate gradient method with a strong
global convergence property. SIAM Journal on Optimization, 10(1), 177–182.

Drineas, Petros, Javed, Asif, Magdon-Ismail, Malik, Pandurangan, Gopal, Virrankoski, Reino,
& Savvides, Andreas. 2006. Distance matrix reconstruction from incomplete distance infor-
mation for sensor network localization. Pages 536–544 of: Sensor and Ad Hoc Communi-
cations and Networks, 2006. SECON’06. 2006 3rd Annual IEEE Communications Society
on, vol. 2. IEEE.

Hager, William W, & Zhang, Hongchao. 2006. A survey of nonlinear conjugate gradient
methods. Pacific journal of Optimization, 2(1), 35–58.

Hastie, Trevor. 2012. Matrix Completion and Large-scale SVD Computations.

He, Jun, Balzano, Laura, & Lui, John. 2011. Online robust subspace tracking from partial
information. arXiv preprint arXiv:1109.3827.

Kennedy, Ryan, Balzano, Laura, Wright, Stephen J, & Taylor, Camillo J. 2014. Online
algorithms for factorization-based structure from motion. Pages 37–44 of: Applications of
Computer Vision (WACV), 2014 IEEE Winter Conference on. IEEE.

Klopp, Olga, Lounici, Karim, & Tsybakov, Alexandre B. 2014. Robust Matrix Completion.
arXiv preprint arXiv:1412.8132.

Lee, John. 2003. Introduction to smooth manifolds. Vol. 218. Springer Gradate Texts in
Mathematics.

Li, Xiaodong. 2013. Compressed sensing and matrix completion with constant proportion of
corruptions. Constructive Approximation, 37(1), 73–99.

Milnor, John W, & Stasheff, James D. 1974. Characteristic classes, volume 76 of Annals of
Mathematics Studies.

Netflix. 2009. Netflix Prize Leaderboard. Available at
http://www.netflixprize.com/leaderboard.

Nie, Feiping, Huang, Heng, & Ding, Chris. 2012a. Low-Rank Matrix Recovery via Efficient
Schatten p-Norm Minimization. Pages 655–661 of: Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence. AAAI.

Nie, Feiping, Wang, Hua, Cai, Xiao, Huang, Heng, & Ding, Chris. 2012b. Robust matrix
completion via joint schatten p-norm and lp-norm minimization. Pages 566–574 of: Data
Mining (ICDM), 2012 IEEE 12th International Conference on. IEEE.

Oh, Sewoong, Montanari, Andrea, & Karbasi, Amin. 2010. Sensor network localization from
local connectivity: Performance analysis for the mds-map algorithm. Pages 1–5 of: Infor-
mation Theory Workshop (ITW), 2010 IEEE. IEEE.

Peng, Yigang, Ganesh, Arvind, Wright, John, Xu, Wenli, & Ma, Yi. 2012. RASL: Robust

67

alignment by sparse and low-rank decomposition for linearly correlated images. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 34(11), 2233–2246.

Razaviyayn, Meisam, Hong, Mingyi, & Luo, Zhi-Quan. 2013. A unified convergence analysis
of block successive minimization methods for nonsmooth optimization. SIAM Journal on
Optimization, 23(2), 1126–1153.

Sato, H. 2014. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe
conditions. ArXiv e-prints, May.

Sato, Hiroyuki, & Iwai, Toshihiro. 2013. A new, globally convergent Riemannian conjugate
gradient method. Optimization, 1–21.

So, Anthony Man-Cho, & Ye, Yinyu. 2007. Theory of semidefinite programming for sensor
network localization. Mathematical Programming, 109(2-3), 367–384.

The OpenMP ARB. 2015. The OpenMP R© API specification for parallel programming. Avail-
able at http://openmp.org.

Vandereycken, Bart. 2013. Low-rank matrix completion by Riemannian optimization. SIAM
Journal on Optimization, 23(2), 1214–1236.

Vandereycken, Bart, Absil, Pierre-Antoine, Vandewalle, Stefan, et al. . 2009. Embedded
geometry of the set of symmetric positive semidefinite matrices of fixed rank. Pages 389–
392 of: Proceedings of the IEEE 15th Workshop on Statistical Signal Processing.

Wen, Zaiwen, Yin, Wotao, & Zhang, Yin. 2012. Solving a low-rank factorization model
for matrix completion by a nonlinear successive over-relaxation algorithm. Mathematical
Programming Computation, 4(4), 333–361.

Wright, SJ, & Nocedal, J. 1999. Numerical optimization. Vol. 2. Springer New York.

Yan, Ming, Yang, Yi, & Osher, Stanley. 2013. Exact low-rank matrix completion from sparsely
corrupted entries via adaptive outlier pursuit. Journal of Scientific Computing, 56(3), 433–
449.

Yang, Yuning, Fend, Yunlong, & Suykens, Johan A.K. 2014. A Nonconvex Approach to Robust
Matrix Completion. Available at ftp://ftp.esat.kuleuven.be/stadius/yyang/yfs2014rmc.pdf.

68 BIBLIOGRAPHY

A | Preconditioned Dai-Yuan Con-
jugate Gradient

Since we have access to a good preconditioner (Boumal & Absil, 2015), we need to develop
the preconditioned version of the new Dai-Yuan conjugate gradient algorithm.

The idea behind preconditioning is to do a change of variable x = Sy (at least in the Euclidian
case) where S is chosen to speedup convergence of the algorithm (Hager & Zhang, 2006). If
we begin by writing the conjugate gradient algorithm in y, changing the variables back to x
leads

ηk = −Pxk
grad f(xk) + β̄k−1ηk−1

xk+1 = xk + αkηk

where Pxk
= S>xk

Sxk
. The computation of β̄k is the same as βk but with grad f(xk) replaced

by S>xk
grad f(xk) and ηk replaced by S−1

xk
ηk (Hager & Zhang, 2006).

Using this rule, we get

β̄k+1 =
〈S>xk+1 grad f(xk+1), S>xk+1 grad f(xk+1)〉xk+1

〈S>xk+1 grad f(xk+1), T (k)
αkηk(S−1

xk ηk)〉xk+1 − 〈S>xk
grad f(xk), S−1

xk ηk〉xk

≈
〈grad f(xk+1), Pxk+1(grad f(xk+1))〉xk+1

〈grad f(xk+1), T (k)
αkηk(ηk)〉xk+1 − 〈grad f(xk), ηk〉xk

with Px : TxM→ TxM the preconditioner, i.e., a “good” approximation of Hess f(x)−1. The
≈ comes from the fact that in general,

〈S>xk+1 grad f(xk+1), T (k)
αkηk

(S−1
xk
ηk)〉xk+1 6= 〈grad f(xk+1), T (k)

αkηk
(ηk)〉xk+1

since Sx depends on x. Yet, since we do not have access in general to the factorization of
Px = S>x Sx, we will use this approximation.

69

70 APPENDIX A. PRECONDITIONED DAI-YUAN CONJUGATE GRADIENT

B | Implementation Details for the
Parallel RCGMC

C-mex files are, basically, compiled C code that can be easily used with Matlab. OpenMP
is an interface compatible with a lot of processors and different kinds of hardware that allow
programmers to easily write parallel code in C and in other programming languages.

In this work, we built a function function [f, grad, WWt, stats] = costgradparallel(U, C, M, Ct, Mt,

lambda, nThreads); that takes the following inputs

1. U: the matrix representing the current point on Gr(m, r), i.e., a m × r real orthogonal
matrix;

2. C: the weights C given as a m× n real sparse matrix (i.e., not a vector);

3. M: the data M given as a m× n real sparse matrix;

4. Ct: the transpose of the weights C, C>, given as a n×m real sparse matrix;

5. Mt: the transpose of the data M, M>, given as a n×m real sparse matrix;

6. lambda: the regularization parameter, a real positive scalar;

7. nThreads: the number of threads to be used, a real positive integer scalar.

and returns

1. f: the cost f(U);

2. grad: the gradient grad f(U);

3. WWt: the matrix WW> (useful in the preconditioner);

4. stats: some statistics to analyze the algorithm execution. This structure is made of
16 fields, containing the execution time of each part of the algorithm: inputs checks,
allocations and then each different portion of the algorithm.

To write such a function, there is a few things required:

• The name of the file should be costgradparallel.c;

• The file should contain the following function

1 void mexFunction (
2 int nlhs , mxArray *plhs [],
3 int nrhs , const mxArray * prhs [])
4 {

71

72 APPENDIX B. IMPLEMENTATION DETAILS FOR THE PARALLEL RCGMC

that will be called when the function is called from the Matlab environment. The nlhs

variable count the number of outputs that will all be stored in the plhs array, while nrhs

count the inputs, stored in prhs;

• The file (and other depend files) should be compiled from the Matlab environment. In
our case, the dependent files1 are compiled using

1 mex file.c -c -lmwlapack -lmwblas -largeArrayDims CFLAGS ="\ $CFLAGS -fopenmp -O3 -
Wall" LDFLAGS ="\ $LDFLAGS -O3 -fopenmp -Wall"

where file is one of the following accsABtFast.c sUW.c sRW.c UtCX.c . The costgradparallel.c

on the other hand is compiled with

1 mex costgradparallel .c accsABtFast .o sUW.o sRW.o UtCX.o buildSolveChol .o -
lmwlapack -lmwblas -largeArrayDims CFLAGS ="\ $CFLAGS -O3 -fopenmp -Wall" LDFLAGS
="\ $LDFLAGS -O3 -fopenmp -Wall"

where we can see the depend files accsABtFast.o sUW.o sRW.o UtCX.o. In the command, we
see the -fopenmp flag which is used to activate the OpenMP commands. Note that we
successfully compiled the files on both a OS X and a Linux computer, but there might
be additional change to do in your system configuration to compile the files.

To parallelize portions of the code, we thus used the OpenMP interface. The use of such tool
is very easy. For instance, to parallelize this loop

1 for(colW = 0; colW < n; colW ++) {
2 buildSolveChol (colW , m, n, r, U, Csparse , Xsparse , sIr , sJc , lambdaval , R, U, W+r*

colW) ;
3 }

used to find each column of W sequentially, we simply need to add the following command
#pragma omp parallel for in front of it and allocate a few arrays for each thread (in order for each
of them to write intermediatary results in their own array, to avoid “collisions”). This leads
to the following code

1 # pragma omp parallel for
2 for(colW = 0; colW < n; colW ++) {
3 int tidLoc = omp_get_thread_num ();
4 buildSolveChol (colW , m, n, r, U, Csparse , Xsparse , sIr , sJc , lambdaval , Rk[tidLoc

], Ui[tidLoc], W+r*colW) ;
5 }

where the tidLoc variable is used to retreive the “thread number”, in order for each thread to
write temporary results in his own array. All arrays are then merged at the end. This is the
main and only strategy used to parallelize operations in this implementation.

1Regular C files, created in order to avoid having all functions in one single file.

C | Orthogonalized Alternating Lin-
ear Matrix Completion

Adding the orthogonalization heuristic1 to algorithm 3, we obtain algorithm 5, the orthogo-
nalized Alternating Linear Matrix Completion, oALMC.

Algorithm 5 Orthogonalized Alternating Linear Matrix Completion
procedure oALMC(U(0),V(0), ε)

k ← 0
e←∞
while e > ε do

U(k+1) ← argminU∈Rm×r ‖PΩ(M−U ·V(k))‖1
V(k+1) ← argminV∈Rr×n ‖PΩ(M−U(k+1) ·V)‖1
QR ← U(k+1)

U(k+1) ← Q
V(k) ← RV(k)

e← f(U(k),V(k))− f(U(k+1),V(k+1))
k ← k + 1

end while
return U(k), V(k)

end procedure

We can easily prove that, if it converges, this algorithm converges to a coordinate-wise mini-
mizer of

min
U∈Rm×r,V∈Rr×n,U>U=Ir

∑
(i,j)∈Ω

|Mij − (UV)ij |,

the orthogonality constraint on U making it probable. The proof is mostly the same as for
ALMC, but we need to keep track of the orthogonality constraint.
Theorem 3 (Convergence of oALMC). If iterates (U(k),V(k)) are generated by algorithm 5,
then every limit point is a coordinate-wise minimizer of the function

f : Rm×r × Rr×n : (U,V)→ ‖PΩ(M−UV)‖`1

Proof. Let us define X(r) = (U(dr/2e),V(br/2c)). Hence, r increases by one when we either
update U or V.

1As it does not prove that the (U(k),V(k)) remain bounded since it depends on multiple parameters like
the mask Ω and the underlying low-rank matrix.

73

74 APPENDIX C. ORTHOGONALIZED ALMC

We trivially have, ∀r ≥ 0:
f(X(r)) ≥ f(X(r+1)) ≥ · · · ≥ 0

Let us extract from {X(r)}r∈N a subsequence converging towards X∗ = (U∗,V∗): {X(rj)}j∈N.
Let us also denote by Ũ(k) and Ṽ(k) the intermediate matrices (i.e., after optimization but
before orthogonalization). Using this notation, note that

f(Ũ(k), Ṽ(k)) = f(U(k),V(k)).

Let us focus on the U iterates. For all U ∈ Rm×r such that U>U = Ir, and for all j ∈ N we
have

f(U,V(brj/2c)) ≥ min
U∈Rm×r:U>U=Ir

f(U,V(brj/2c))

≥ min
U∈Rm×r

f(U,V(brj/2c))

= f(Ũ(brj/2c+1),V(brj/2c))
≥ f(Ũ(brj/2c+1), Ṽ(brj/2c+1))
≥ f(U(brj/2c+1),V(brj/2c+1))
≥ f(X2(brj/2c+1))
≥ f(X(rj+2))
≥ f(X(rj+2))
= f(U(drj+2/2e),V(brj+2/2c)).

By letting j →∞, we have ∀U ∈ Rm×r such that U>U = Ir,

f(U,V∗) ≥ f(U∗,V∗).

This is sufficient to conclude that U∗ is a coordinate-wise minimizer of f .

The exact same proof can be used to note that V∗ is a coordinate-wise minimizer of f .

	Notations
	Introduction
	Low-Rank Matrix Completion
	Motivations
	The Problem
	Previous Work

	Essential Tools of Riemannian Optimization
	The Manifold Structure
	Embedded and Quotient Manifolds

	Steepest Descent Algorithm
	Tangent Space and Inner Product
	Gradient
	Retraction
	Steepest Descent

	Conjugate Gradient Algorithm
	Vector Transport
	Conjugate Gradient

	I Improvements of the RCGMC Algorithm
	A Dai-Yuan Conjugate Gradient Algorithm for RCGMC
	RCGMC
	Conjugate Gradient
	Dai-Yuan Conjugate Gradient
	Line-Search Algorithm for the Weak Wolfe Conditions
	Numerical Results
	Conclusions

	High Performance Computing
	The Main Parts of RCGMC
	Parallelization Strategy
	Numerical Results
	A Parallel Dai-Yuan Conjugate Gradient

	II Robust Low-Rank Matrix Completion
	Robust Low-Rank Matrix Completion
	Previous work
	Our Contribution
	Iteratively Reweighted Least-Squares Method
	Convergence of the IRLS
	The Choice of the h Function
	The Algorithm

	Alternating Linear Matrix Completion
	Solving the LP's
	The Algorithm
	Convergence

	Smoothing Techniques
	The Low-Rank Matrices Manifold
	Smoothing Techniques
	Convergence Analysis

	Numerical Results and Comparison of the Algorithms
	Synthetic Experiments
	Conclusions

	Applications
	Recommender Systems
	Robust Structured Image Inpainting

	Conclusions
	Bibliography
	Preconditioned Dai-Yuan Conjugate Gradient
	Implementation Details for the Parallel RCGMC
	Orthogonalized ALMC

